Weak Solutions for Fractional Differential Equations via Henstock–Kurzweil–Pettis Integrals

Haide Gou 1  and Yongxiang Li 2
  • 1 Department of Mathematics, Northwest Normal University, 730070, Lanzhou, China
  • 2 Department of Mathematics, Northwest Normal University, 730070, Lanzhou, PR China
Haide Gou and Yongxiang Li

Abstract

In this paper, we used Henstock–Kurzweil–Pettis integral instead of classical integrals. Using fixed point theorem and weak measure of noncompactness, we study the existence of weak solutions of boundary value problem for fractional integro-differential equations in Banach spaces. Our results generalize some known results. Finally, an example is given to demonstrate the feasibility of our conclusions.

  • [1]

    M. Cichoń, Weak solutions of differential equations in Banach spaces, Discuss. Math. Differential Incl. 15 (1995), 5–14.

  • [2]

    M. Cichoń, On solutions of differential equations in Banach spaces, Nolinear Anal. 60 (2005), 651–667.

    • Crossref
    • Export Citation
  • [3]

    M. Cichoń, I. Kubiaczyk, A. Sikorska-Nowak and A. Yantir, Weak solution for the dynamic Cauchy problem in Banach spaces, Nolinear Anal. 71 (2009), 2936–2943.

    • Crossref
    • Export Citation
  • [4]

    D. O’Regan, Existence results for nonlinear integral equation, J. Math. Anal. Appl. 192 (1995), 705–726.

    • Crossref
    • Export Citation
  • [5]

    D. O’Regan, Singular integral equations arising in draining and coating flows, Appl. Math. Comput. 205(1),(2008) 438–441.

  • [6]

    F. S. De Blasi, On a property of the unit sphere in Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie (NS) 21 (1977), 259–262.

  • [7]

    G. Emanuelle, Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. Roum. 25 (1981), 353–358.

  • [8]

    H. A. H. Salem, On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies, J. Comput. Appl. Math. 224(2), (2009), 516–572.

  • [9]

    H. A. H. Salem, On the nonlinear Hammerstein integral equations in Banach spaces and application to the boundary value problem of fractioanl order, Math. Comput. Model. 48 (2008), 1178–1190.

    • Crossref
    • Export Citation
  • [10]

    H. A. H. Salem and M. Cichoń, On solution of fractional order boundary value problems with integral boundary conditions in Banach spaces, J. Funct. Spaces and Appl. vol. 2013, Article ID 428094, 13 pages.

  • [11]

    M. Cichoń and I. Kubiaczyk, Existence theorem for the Hammerstein integral equation, Discuss. Math. Differ. Incl. 16 (1996), 171–177.

  • [12]

    R. P. Agarwal, V. Lupulescu, D. O’Regan and G. Rahman, Weak solutions for fractional differential equation as in nonreflexive Banach spaces via Riemann–Pettis integrals, Math. Nachr. 289(4) (2016), 395–409.

    • Crossref
    • Export Citation
  • [13]

    A. B. Amar, Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock–Kurzweil–Pettis integrability, Comment. Math. Univ. Carolin. 52(2) (2011), 177–190.

  • [14]

    A. B. Amar, On an integral equation under Henstock–Kurzweil–Pettis integrability, Arb. J. Math. 4 (2015), 91–99.

    • Crossref
    • Export Citation
  • [15]

    B. L. Li and H. D. Gou, Weak solutions nonlinear fractional integrodifferential equations in nonreflexive Banach spaces, Boundary value prob. 2016 (2016), Art. No. 209.

    • Crossref
    • Export Citation
  • [16]

    M. Cichoń, I. Kubiaczyk and A. Sikorska Nowak, The Henstock–Kurwzeil–Pettis integrals and existence theorems for the Cauchy problem, Czechoslovak. Math. J. 54 (2004), 279–289.

    • Crossref
    • Export Citation
  • [17]

    B. Satco, A Kolmós-type theorem for the set-valued Henstock–Kurzweil–Pettis integrals and applications. Czech. Math. J. 56(131),(2006) 1029–1047.

    • Crossref
    • Export Citation
  • [18]

    D. Kurtz and C. Swartz, Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock–Kurzweil and McShane, World Scientific, Singapore, 2004.

  • [19]

    S. B. kaliaj, A. D. Tato and F. D. Gumeni, Controlled convergence theorem for the Henstock–Kurwzeil–Pettis integrals on m-dimensional compact intervals, Czechoslovak. Math. J. 62(1), (2012) 243–255.

    • Crossref
    • Export Citation
  • [20]

    L. Di Piazza and K. Musial, Characterizations of Kurzweil–Henstock–Pettis integrable functions, Studia Mathematica. 176(2) (2006), 159–176.

    • Crossref
    • Export Citation
  • [21]

    Z. Bai and H. Lü, Positive solutions boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), 495–505.

    • Crossref
    • Export Citation
  • [22]

    N. Hussain and M. A. Taoudi, Krasnoselskii-type fixed point theorems with applications to Volterra integral equations. Fixed Point Theory Appl. 196 (2013).

  • [23]

    A. R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations in Abstract Spaces, 387–404, Orlando, 1978.

  • [24]

    J. Garcia-Falset, Existence of fixed points and measure of weak noncompactness, Nonlinear Anal. 71 (2009), 2625–2633.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at researchers in nonlinear sciences, engineers, and computational scientists, economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.

Search