Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 11, 2019

Soliton Solutions for Some Nonlinear Partial Differential Equations in Mathematical Physics Using He’s Variational Method

  • Mohammed K. Elboree EMAIL logo

Abstract

In this paper, we constructed the variational principles for Bogoyavlensky–Konopelchenko equation, the generalized (3+1)-dimensional nonlinear wave in liquid containing gas bubbles and a new coupled Kadomtsev–Petviashvili (KP) equation via He’s semi-inverse method. Based on this formulation, we obtained the solitary wave solutions via Ritz method. We explained the properties of the soliton waves numerically by some figures. Finally, the physical interpretation for these solutions are obtained.

References

[1] J. H. He, Asymptotic methods for solitary solutions and compactons, Abstr. Appl. Anal. 916793 (2012).10.1155/2012/916793Search in Google Scholar

[2] J. H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals 19 (2004), 847–851.10.1016/S0960-0779(03)00265-0Search in Google Scholar

[3] M. T. Darvishi, F. Khani, S. Hamedi-Nezhad, S.-W. Ryu, New modifica- tion of the HPM for numerical solutions of the sine-Gordon and coupled sine-Gordon equations, Int. J. Comput. Math. 87 (2010), 908–919.10.1080/00207160802247596Search in Google Scholar

[4] H. Najafi, M. Najafi, S. Arbabi Mohammad-Abadi. New soliton solutions for Kaup-Boussinesq system, Int. J. Appl. Math. Res. 1 (2012), 402–408.10.14419/ijamr.v1i4.310Search in Google Scholar

[5] M. T. Darvishi, M. Najafi. A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation, Chin. Phys. Lett. 28 (2011), 040202.10.1088/0256-307X/28/4/040202Search in Google Scholar

[6] M. Najafi, M. Najafi, M. T. Darvishi. New exact solutions to the (2+1)-dimensional Ablowitz–Kaup–Newell–Segur equation: modification of extended homoclinic test approach, Chin. Phys. Lett. 29 (2012), 040202.10.1088/0256-307X/29/4/040202Search in Google Scholar

[7] M. Khalfallah, New exact traveling wave solutions of the (3+1) dimensional Kadomtsev–Petviashvili (KP) equation. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 1169–1175.10.1016/j.cnsns.2007.11.010Search in Google Scholar

[8] M. Khalfallah, Exact traveling wave solutions of the Boussinesq–Burgers equation, Math. Comput. Model. 49 (2009), 666–671.10.1016/j.mcm.2008.08.004Search in Google Scholar

[9] A. S. Abdel Rady, E. S. Osman, M. Khalfallah, The homogeneous balance method and its application to the Benjamin Bona Mahoney (BBM) equation, Appl. Math. Comput. 217 (2010), 1385–1390.10.1016/j.amc.2009.05.027Search in Google Scholar

[10] A. S. Abdel Rady, E. S. Osman, Mohammed Khalfallah, On soliton solutions for a generalized Hirota-Satsuma coupled KdV equation, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 264–274.10.1016/j.cnsns.2009.03.011Search in Google Scholar

[11] A. S. Abdel Rady, M. Khalfallah, On soliton solutions for boussinesq-burgers equations, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 886–894.10.1016/j.cnsns.2009.05.039Search in Google Scholar

[12] A. S. Abdel Rady, A. H. Khater, E. S. Osman, Mohammed Khalfallah, New periodic wave and soliton solutions for system of coupled Korteweg-de Vries equations, Appl. Math. Comput. 207 (2009), 406–414.10.1016/j.amc.2008.10.064Search in Google Scholar

[13] S. Z. Rida, M. Khalfallah, New periodic wave and soliton solutions for a Kadomtsev–Petviashvili (KP) like equation coupled to a Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 2818–2827.10.1016/j.cnsns.2009.10.024Search in Google Scholar

[14] M. K. Elboree, New soliton solutions for a Kadomtsev–Petviashvili (KP) like equation coupled to a Schrödinger equation, Appl. Math. Comput. 218 (2012), 5966–5973.10.1016/j.amc.2011.11.074Search in Google Scholar

[15] A. S. Abdel Rady, E. S. Osman, M. Khalfallah, Multi soliton solution for the system of Coupled Korteweg–de Vries equations, Appl. Math. Comput. 210 (2009), 177–181.10.1016/j.amc.2008.12.076Search in Google Scholar

[16] A. S. Abdel Rady, E. S. Osman, M. Khalfallah, Multi soliton solution, rational solution of the Boussinesq-Burgers equations, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1172–1176.10.1016/j.cnsns.2009.05.053Search in Google Scholar

[17] M. K. Elboree, Hyperbolic and trigonometric solutions for some nonlinear evolution equations Hyperbolic and trigonometric solutions for some nonlinear evolution equations, Commun Nonlinear Sci Numer. Simul. 17 (2012), 4085–4096.10.1016/j.cnsns.2012.03.029Search in Google Scholar

[18] Z. L. Tao, G. H. Chen, Remark on a constrained variational principle for heat conduction, Therm. Sci. 17 (2013), 951–952.10.2298/TSCI121229040TSearch in Google Scholar

[19] X. W. Li, et al., On the semi-inverse method and variational principle, Therm. Sci. 17(5) (2013), 1565–1568.10.2298/TSCI1305565LSearch in Google Scholar

[20] J.-H. He, Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int. J. Turbo Jet Engines. 14 (1997), 23–28.10.1515/TJJ.1997.14.1.23Search in Google Scholar

[21] E. H. M. Zahran, M. M. A. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Modell. 40 (2016), 1769–1775.10.1016/j.apm.2015.08.018Search in Google Scholar

[22] X. Xiang-peng, L. Xi-qiang, Z. Lin-lin, Explicit solutions of the Bogoyavlensky–Konoplechenko equation, Appl. Math. Comput. 215 (2010), 3669–3673.10.1016/j.amc.2009.11.005Search in Google Scholar

[23] J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B 20(10) (2006), 1141–1199.10.1142/S0217979206033796Search in Google Scholar

[24] Y. H. Ye, L. F. Mo. He’s variational method for the Benjamin - Bona equation and the Kawahara equation, Comput. Math. Appl. 58 (2009), 2420–2422.10.1016/j.camwa.2009.03.026Search in Google Scholar

[25] H. Triki, Z. Jovanoski, A. Biswas. Shock wave solutions to the Bogoyavlensky–Konopelchenko equation, Indian J. Phys. 88(1) (2014), 71–74.10.1007/s12648-013-0380-7Search in Google Scholar

[26] M. V. Prabhakar, H. Bhate. Exact solutions of the Bogoyavlensky–Konoplechenko equation, Lett. Math. Phys. 64 (2003), 1–6.10.1023/A:1024909327151Search in Google Scholar

[27] X. Xiang-peng, L. Xi-qiang, Z. Lin-lin. Explicit solutions of the Bogoyavlensky–Konoplechenko equation, Appl. Math. Comput. 215 (2010), 3669–3673.10.1016/j.amc.2009.11.005Search in Google Scholar

[28] J.-M. Tu, S.-F. Tian, M.-J. Xu, X.-Q. Song, T.-T. Zhang. Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles, Nonlinear Dyn. 83 (2016), 1199–1215.10.1007/s11071-015-2397-2Search in Google Scholar

[29] W. Liu, Y. Zhang. Resonant multiple wave solutions, complexiton solutions and rogue waves of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles, waves in random and complex media, doi: 10.1080/ 17455030.2018.1528026.Search in Google Scholar

[30] A.-M. Wazwaz, Integrability of two coupled Kadomtsev–Petviashvili equations, PRAMANA-J. Phys. 77 (2011), 233–242.10.1007/s12043-011-0141-0Search in Google Scholar

[31] X. Geng, Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations, J. Phys. A: Math. Gen. 36 (2003), 2289.10.1088/0305-4470/36/9/307Search in Google Scholar

[32] A.-M. Wazwaz, M. Mehanna, Solitons and periodic wave solutions for coupled nonlinear equations, Int. J. Nonlinear Sci. 14 (2012), 166–177.Search in Google Scholar

[33] F. Cooper, C. Lucheroni, H. Shepard, P. Sodano, Variational method for studying solitons in the Korteweg–deVries equation, Phys. Lett. A 173 (1993), 33.10.1016/0375-9601(93)90083-CSearch in Google Scholar

Received: 2018-07-01
Accepted: 2019-04-23
Published Online: 2019-05-11
Published in Print: 2020-04-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2018-0188/html
Scroll to top button