Energetic Optimization Considering a Generalization of the Ecological Criterion in Traditional Simple-Cycle and Combined-Cycle Power Plants

Sergio Levario-Medina 1 , Gabriel Valencia-Ortega 1 ,  und Marco Antonio Barranco-Jiménez 2
  • 1 Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Zacatenco, Edif. 9, 2o Piso, Ciudad de México, México
  • 2 Escuela Superior de Cómputo del Instituto Politécnico Nacional, Av. Miguel Bernard, Esq. Av. Miguel Othón de Mendizabal, Colonia Lindavista, Ciudad de México, México
Sergio Levario-Medina
  • Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Zacatenco, Edif. 9, 2o Piso, Ciudad de México, 07738, México
  • E-Mail
  • Suche nach weiteren Artikeln:
  • degruyter.comGoogle Scholar
, Gabriel Valencia-Ortega
  • Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Zacatenco, Edif. 9, 2o Piso, Ciudad de México, 07738, México
  • E-Mail
  • Suche nach weiteren Artikeln:
  • degruyter.comGoogle Scholar
und Marco Antonio Barranco-Jiménez
  • Korrespondenzautor
  • Escuela Superior de Cómputo del Instituto Politécnico Nacional, Av. Miguel Bernard, Esq. Av. Miguel Othón de Mendizabal, Colonia Lindavista, Ciudad de México, 07738, México
  • E-Mail
  • Suche nach weiteren Artikeln:
  • degruyter.comGoogle Scholar

Abstract

The fundamental issue in the energetic performance of power plants, working both as traditional fuel engines and as combined-cycle turbines (gas-steam), lies in quantifying the internal irreversibilities which are associated with the working substance operating in cycles. The purpose of several irreversible energy converter models is to find objective thermodynamic functions that determine operation modes for real thermal engines and at the same time study the trade-off between energy losses per cycle and the useful energy. As those objective functions, we focus our attention on a generalization of the so-called ecological function in terms of an ϵ parameter that depends on the particular heat transfer law used in the irreversible heat engine model. In this work, we mathematically describe the configuration space of an irreversible Curzon–Ahlborn type model. The above allows to determine the optimal relations between the model parameters so that a power plant operates in physically accessible regions, taking into account internal irreversibilities, introduced in two different ways (additively and multiplicatively). In addition, we establish the conditions that the ϵ parameter must fulfill for the energy converter to work in an optimal region between maximum power output and maximum efficiency points.

  • [1]

    L. Chen, C. Wu and F. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn. 24 (1999), 260–279.

  • [2]

    L. Chen, D. Xia and F. Sun, Ecological optimization of generalized irreversible chemical engines, Int. J. Chem. React. Eng. 8 (2010), 1542–6580.

  • [3]

    M. Feidt and M. Costea, From finite time to finite physical dimensions thermodynamics: the Carnot engine and Onsager’s relations revisited, J. Non-Equilib. Thermodyn. 43 (2018), 151–161.

    • Crossref
    • Zitation exportieren
  • [4]

    S. Velasco, J. M. M. Roco, A. Medina, J. A. White and A. Calvo-Hernández, Optimization of heat engines including the saving of natural resources and the reduction of thermal pollution, J. Phys. D, Appl. Phys. 33 (2000), 355–359.

    • Crossref
    • Zitation exportieren
  • [5]

    S. Sánchez-Orgaz, A. Medina and A. Calvo Hernández, Maximum overall efficiency for a solar-driven gas turbine power plant, Int. J. Energy Res. 37 (2013), 1580–1591.

    • Crossref
    • Zitation exportieren
  • [6]

    M. J. Santos, R. P. Merchán, A. Medina and A. Calvo Hernández, Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant, Energy Convers. Manag. 115 (2016), 89–102.

    • Crossref
    • Zitation exportieren
  • [7]

    S. Levario-Medina, G. Valencia-Ortega and L. A. Arias-Hernandez, Thermal optimization of Curzon–Ahlborn heat engines operating under some generalized efficient power regimes, Eur. Phys. J. Plus 134 (2019), 348: 1–13.

  • [8]

    A. Bejan, Advanced Engineering Thermodynamics, 3rd ed., John Wiley and Sons Inc., New York, 2006.

  • [9]

    M. A. Barranco-Jiménez and F. Angulo-Brown, Thermoeconomic optimisation of Novikov power plant model under maximum ecological conditions, J. Energy Inst. 80 (2007), 96–104.

    • Crossref
    • Zitation exportieren
  • [10]

    J. J. Silva-Martinez and L. A. Arias-Hernandez, Energetic performance of a series arrangement of irreversible power cycles, Rev. Mex. Fis. 59 (2013), 1: 192–198.

  • [11]

    I. Reyes-Ramírez, M. A. Barranco-Jiménez, A. Rojas-Pacheco and L. Guzmán-Vargas, Global stability analysis of a Curzon–Ahlborn heat engine under different regimes of performance, Entropy 16 (2014), 5796–5809.

    • Crossref
    • Zitation exportieren
  • [12]

    J. Gonzalez-Ayala, L. A. Arias-Hernandez and F. Angulo-Brown, A graphic approach to include dissipative-like effects in reversible thermal cycles, Eur. Phys. J. B 90 (2017), 86: 1–8.

  • [13]

    H. Feng, L. Chen and F. Sun, Optimal ratios of the piston speeds for a finite speed irreversible Carnot heat engine cycle, Int. J. Sustain. Energy 30 (2011), 321–335.

    • Crossref
    • Zitation exportieren
  • [14]

    M. Feidt, Finite Physical Dimension Optimal Thermodynamics 1-Fundamentals, 1st ed., ISTE Press, Elsevier, London, 2017.

  • [15]

    K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn. 22 (1997), 311–355.

  • [16]

    C. Wu, L. Chen and J. Chen, Recent Advances in Finite Time Thermodynamics, 1st ed., Nova Science, New York, 1999.

  • [17]

    A. Durmayaz, O. S. Sogutb, B. Sahin and H. Yavuzd, Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics, Prog. Energy Combust. Sci. 30 (2004), 175–217.

    • Crossref
    • Zitation exportieren
  • [18]

    S. Petrescu, M. Costea, C. Harman and T. Florea, Application of the Direct Method to irreversible Stirling cycles with finite speed, Int. J. Energy Res. 26 (2002), 589–609.

    • Crossref
    • Zitation exportieren
  • [19]

    L. G. Chen, H. J. Feng and F. R. Sun, Optimal piston speed ratio analyses for irreversible Carnot refrigerator and heat pump using finite time thermodynamics, finite speed thermodynamics and direct method, J. Energy Inst. 84 (2011), 105–112.

    • Crossref
    • Zitation exportieren
  • [20]

    M. Feidt, Thermodynamique optimale en dimensions physiques finies, 1st ed., Hermes Science, Paris, 2013 (in French).

  • [21]

    F. Angulo-Brown, J. Fernández-Betanzos and C. A. Pico, Compression ratio of an optimized air standard Otto-cycle model, Eur. J. Phys. 15 (1994), 38–42.

    • Crossref
    • Zitation exportieren
  • [22]

    F. Angulo-Brown, J. A. Rocha-Martínez and T. D. Navarrete-González, A non-endoreversible Otto cycle model: improving power output and efficiency, J. Phys. D 29 (1996), 80–83.

    • Crossref
    • Zitation exportieren
  • [23]

    A. Fischer and K. H. Hoffmann, Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak? J. Non-Equilib. Thermodyn. 29 (2004), 9–28.

  • [24]

    P. L. Curto Risso, A. Medina and A. Calvo Hernández, Theoretical and simulated models for an irreversible Otto cycle, J. Appl. Phys. 104 (2008), 094911: 1–11.

  • [25]

    P. L. Curto Risso, A. Medina and A. Calvo Hernández, Optimizing the operation of a spark ignition engine: simulation and theoretical tools, J. Appl. Phys. 105 (2009), 094904-1–094904-10.

  • [26]

    Y. Izumida and K. Okuda, Molecular kinetic analysis of a finite-time Carnot cycle, Europhys. Lett. 83 (2008), 60003-p1–60003-p6.

  • [27]

    D. A. Rojas-Gamboa, J. I. Rodríguez, J. Gonzalez-Ayala and F. Angulo-Brown, Ecological efficiency of finite-time thermodynamics: a molecular dynamics study, Phys. Rev. E 98 (2018), 022130-1–022130-11.

  • [28]

    A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, 1st ed., Oxford University Press, Oxford, 1992.

  • [29]

    S. Özkaynak, S. Göktun and H. Yavuz, Finite-time thermodynamic analysis of a radiative heat engine with internal irreversibility, J. Phys. D, Appl. Phys. 27 (1994), 1139–1143.

    • Crossref
    • Zitation exportieren
  • [30]

    J. Chen, The maximum power output and maximum efficiency of an irreversible Carnot heat engine, J. Phys. D, Appl. Phys. 27 (1994), 1144–1149.

    • Crossref
    • Zitation exportieren
  • [31]

    F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69 (1991), 7465–7469.

    • Crossref
    • Zitation exportieren
  • [32]

    A. Calvo-Hernández, A. Medina, J. M. M. Roco, J. A. White and S. Velasco, Unified optimization criterion for energy converters, Phys. Rev. E 63 (2001), 037102. 1–4.

  • [33]

    T. Yilmaz, A new performance criterion for heat engines: efficient power, J. Energy Inst. 79 (2006), 38–41.

    • Crossref
    • Zitation exportieren
  • [34]

    F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43 (1975), 22–24.

    • Crossref
    • Zitation exportieren
  • [35]

    J. Chen, Z. Yan, G. Lin and B. Andresen, On the Curzon–Ahlborn efficiency and its connection with the efficiencies of real heat engines, Energy Convers. Manag. 42 (2001), 173–181.

    • Crossref
    • Zitation exportieren
  • [36]

    M. H. Rubin, Optimal configuration of a class of irreversible heat engines. I, Phys. Rev. A 19 (1979), 1272–1276.

    • Crossref
    • Zitation exportieren
  • [37]

    R. C. Tolman and P. C. Fine, On the irreversible production of entropy, Rev. Mod. Phys. 20 (1948), 51–77.

    • Crossref
    • Zitation exportieren
  • [38]

    S. Levario-Medina and L. A. Arias-Hernandez, The PΦ-Compromise Function as a criterion of merit to optimize irreversible thermal engines, preprint (2019), http://arxiv.org/pdf/1908.11861v1.

  • [39]

    A. Bejan, Theory of heat transfer-irreversible power plants, Int. Heat Mass Transf. 31 (1988), 1211–1219.

    • Crossref
    • Zitation exportieren
  • [40]

    J. M. Gordon and M. Huleihil, General performance characteristics of real heat engines, J. Appl. Phys. 72 (1992), 829–837.

    • Crossref
    • Zitation exportieren
  • [41]

    J. M. Gordon and M. Huleihil, On optimizing maximum-power heat engines, J. Appl. Phys. 69 (1991), 1–7.

    • Crossref
    • Zitation exportieren
  • [42]

    L. A. Arias-Hernandez, M. A. Barranco-Jiménez and F. Angulo-Brown, Comparative analysis of two ecological type modes of performance for a simple energy converter, J. Energy Inst. 82 (2009), 223–227.

    • Crossref
    • Zitation exportieren
  • [43]

    L. A. AriasHernandez and F. AnguloBrown, A general property of endoreversible thermal engines, J. Appl. Phys. 81 (1997), 2973–2979.

    • Crossref
    • Zitation exportieren
  • [44]

    S. Sieniutycz and P. Salamon, Finite Time Thermodynamics and Thermoeconomics, 1st ed., Taylor and Francis, New York, 1990.

  • [45]

    G. Valencia-Ortega and L. A. Arias-Hernandez, Thermodynamic optimization of an electric circuit as a non-steady energy converter, J. Non-Equilib. Thermodyn. 42 (2017), 187–200.

  • [46]

    S. Levario-Medina, Estudio del desempeño energético de un motor térmico operando a potencia eficiente generalizada, Master Thesis, ESFM-IPN, México 2016 (in Spanish).

  • [47]

    R. Clausius, The Mechanical Theory of Heat, 1st ed., Mac Millan and Co., London, 1879.

  • [48]

    P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry and B. Andresen, What conditions make minimum entropy production equivalent to maximum power production? J. Non-Equilib. Thermodyn. 26 (2001), 73–83.

  • [49]

    A. Ocampo-García, M. A. Barranco-Jiménez and F. Angulo-Brown, Thermodynamic and thermoeconomic optimization of coupled thermal and chemical engines by means of an equivalent array of uncoupled endoreversible engines, Eur. Phys. J. Plus 133 (2018), 342: 1–16.

  • [50]

    K. Schwalbe and K. H. Hoffmann, Optimal Control of an endoreversible solar power plant, J. Non-Equilib. Thermodyn. 43 (2018), 255–271.

    • Crossref
    • Zitation exportieren
  • [51]

    M. A. Barranco-Jiménez, A. Ocampo-García and F. Angulo-Brown, Thermodynamic analysis of an array of isothermal endoreversible electric engines, Eur. Phys. J. Plus 135 (2020), 153: 1–14.

  • [52]

    F. Angulo-Brown, M. Santillán and E. Calleja-Quevedo, Thermodynamic optimality in some biochemical reactions, Il Nuovo Cimento D 17 (1995), 87–90.

    • Crossref
    • Zitation exportieren
  • [53]

    M. Santillán, L. A. Arias-Hernandez and F. Angulo-Brown, Some optimization criteria for biological systems in linear irreversible thermodynamics, IL Nuovo Cimento D 19 (1997), 99–112.

  • [54]

    M. A. Barranco-Jiménez and F. Angulo-Brown, A nonendoreversible model for wind energy as a solar-driven heat engine, J. Appl. Phys. 80 (1996), 4872–4876.

    • Crossref
    • Zitation exportieren
  • [55]

    M. A. Barranco-Jiménez and F. Angulo-Brown, A simple model on the influence of the greenhouse effect on the efficiency of solar-to-wind energy conversion, IL Nuovo Cimento D 26 (2003), 235–246.

  • [56]

    F. Angulo-Brown and L. A. Arias-Hernandez, Reply to “Comment on ‘A general property of endoreversible thermal engines”’ [J. Appl. Phys. 89, 1518 (2001)], J. Appl. Phys. 89 (2001), 1520–1521.

    • Crossref
    • Zitation exportieren
Artikel kaufen
Erhalten sie sofort unbegrenzten Zugriff auf den Artikel.
Anmelden
Haben Sie den Zugang bereits erworben? Melden Sie sich bitte an.


oder
Zugriff über Ihre Institution

Zeitschrift + Hefte

The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on non-equilibrium phenomena and on analytic or numeric modeling for their interpretation.

Suche