Endoreversible Otto Engines at Maximal Power

  • 1 Department of Physics, University of Maryland, Baltimore County, Baltimore, USA
Zackary Smith, Priyo S. Pal and Sebastian DeffnerORCID iD: https://orcid.org/0000-0003-0504-6932


Despite its idealizations, thermodynamics has proven its power as a predictive theory for practical applications. In particular, the Curzon–Ahlborn efficiency provides a benchmark for any real engine operating at maximal power. Here we further develop the analysis of endoreversible Otto engines. For a generic class of working mediums, whose internal energy is proportional to some power of the temperature, we find that no engine can achieve the Carnot efficiency at finite power. However, we also find that for the specific example of photonic engines the efficiency at maximal power is higher than the Curzon–Ahlborn efficiency.

  • [1]

    D. Kondepudi and I. Prigogine, Modern Thermodynamics, John Wiley & Sons, 1998.

  • [2]

    H. Callen, Thermodynamics and an Introduction to Thermostastistics, Wiley, New York, USA, 1985.

  • [3]

    K. H. Hoffmann, J. M. Burzler and S. Schubert, J. Non-Equilib. Thermodyn. 22 (1997), 311.

  • [4]

    F. L. Curzon and B. Ahlborn, Am. J. Phys. 43 (1975), 22.

  • [5]

    L. B. Erbay and H. Yavuz, Energy 22 (1997), 645.

  • [6]

    M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck, Phys. Rev. Lett. 105 (2010), 150603.

  • [7]

    H. S. Leff, Am. J. Phys. 55 (1987), 602.

  • [8]

    Y. Rezek and R. Kosloff, New J. Phys. 8 (2006), 83.

  • [9]

    O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, et al., Phys. Rev. Lett. 109 (2012), 203006.

  • [10]

    R. Uzdin and R. Kosloff, Europhys. Lett. 108 (2014), 40001.

    • Crossref
    • Export Citation
  • [11]

    S. Deffner, Entropy 20 (2018), 875.

  • [12]

    S. Deffner and S. Campbell, Quantum Thermodynamics, Morgan & Claypool Publishers, 2019.

  • [13]

    M. Kloc, P. Cejnar and G. Schaller, Phys. Rev. E 100 (2019), 042126.

  • [14]

    N. M. Myers and S. Deffner, Phys. Rev. E 101 (2020), 012110.

  • [15]

    J. -F. Chen, C. -P. Sun and H. Dong, Phys. Rev. E 100 (2019), 032144.

  • [16]

    J. -F. Chen, C. -P. Sun and H. Dong, Phys. Rev. E 100 (2019), 062140.

  • [17]

    M. V. S. Bonança, J. Stat. Mech. Theory Exp. 2019, (2019), 123203.

  • [18]

    O. Abah and M. Paternostro, Phys. Rev. E 99 (2019), 022110.

  • [19]

    S. Lee, M. Ha, J. -M. Park and H. Jeong, Phys. Rev. E 101 (2020), 022127.

  • [20]

    O. Raz, Y. Subasi and R. Pugatch, Phys. Rev. Lett. 116 (2016), 160601.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues

The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on non-equilibrium phenomena and on analytic or numeric modeling for their interpretation.