A Theoretical Study of the Temperature Gradient Effect on the Soret Coefficient in n-Pentane/n-Decane Mixtures Using Non-Equilibrium Molecular Dynamics

Xiaoyu Chen 1 , Ruquan Liang 1 , 2 , Yong Wang 1 , Ziqi Xia 1 , Lichun Wu 1 , Yang Liang 1 ,  and Gan Cui 1
  • 1 Key Laboratory of National Education Ministry for Electromagnetic Process of Materials, Northeastern University, Shenyang, China
  • 2 School of Mechanical and Vehicle Engineering, Linyi University, Linyi, China
Xiaoyu Chen
  • Key Laboratory of National Education Ministry for Electromagnetic Process of Materials, 12434Northeastern University, Shenyang, 110819, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ruquan Liang
  • Corresponding author
  • School of Mechanical and Vehicle Engineering, Linyi University, Linyi, 276000, China
  • Key Laboratory of National Education Ministry for Electromagnetic Process of Materials, 12434Northeastern University, Shenyang, 110819, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Yong Wang
  • Key Laboratory of National Education Ministry for Electromagnetic Process of Materials, 12434Northeastern University, Shenyang, 110819, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ziqi Xia
  • Key Laboratory of National Education Ministry for Electromagnetic Process of Materials, 12434Northeastern University, Shenyang, 110819, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Lichun Wu
  • Key Laboratory of National Education Ministry for Electromagnetic Process of Materials, 12434Northeastern University, Shenyang, 110819, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Yang Liang
  • Key Laboratory of National Education Ministry for Electromagnetic Process of Materials, 12434Northeastern University, Shenyang, 110819, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Gan Cui
  • Key Laboratory of National Education Ministry for Electromagnetic Process of Materials, 12434Northeastern University, Shenyang, 110819, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The effect of the temperature gradient on the Soret coefficient in n-pentane/n-decane (n-C5/n-C10) mixtures was investigated using non-equilibrium molecular dynamics (NEMD) with the heat exchange (eHEX) algorithm. n-Pentane/n-decane mixtures with three different compositions (0.25, 0.5, and 0.75 mole fractions, respectively) and the TraPPE-UA force field were used in computing the Soret coefficient (ST) at 300 K and 1 atm. Added/removed heat quantities (ΔQ) of 0.002, 0.004, 0.006, 0.008, and 0.01 kcal/mol were employed in eHEX processes in order to study the effect of different thermal gradients on the Soret coefficient. Moreover, a phenomenological description was applied to discuss the mechanism of this effect. Present results show that the Soret coefficient values firstly fluctuate violently and then become increasingly stable with increasing ΔQ (especially in the mixture with a mole fraction of 0.75), which means that ΔQ has a smaller effect on the Soret coefficient when the temperature gradient is higher than a certain thermal gradient. Thus, a high temperature gradient is recommended for calculating the Soret coefficient under the conditions that a linear response and constant phase are ensured in the system. In addition, the simulated Soret coefficient obtained at the highest ΔQ within three different compositions is in great agreement with experimental data.

  • [1]

    C. Ludwig, Diffusion zwischen ungleich erwarten orten gleich zusammengestzter losungen, Sitzungsber. Math.-Naturwiss. Cl. Kaiserlichen Akad. Wiss. 20 (1856), 539.

  • [2]

    C. Soret, Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohéne dont deux parties sont portées à des températures différentes, Arch. Sci. Phys. Nat. 2 (1979), 48–61.

  • [3]

    M. Eslamian and M. Z. Saghir, Modeling of DNA thermophoresis in dilute solutions using the non-equilibrium thermodynamics approach, J. Non-Equilib. Thermodyn. 37 (2012), 63–76.

  • [4]

    M. Siemer, T. Marquardt, G. V. Huerta and S. Kabelac, Local entropy production rates in a polymer electrolyte membrane fuel cell, J. Non-Equilib. Thermodyn. 42 (2017), 1–30.

    • Crossref
    • Export Citation
  • [5]

    V. Bustos and M. Mayorga, Non-equilibrium thermodynamics of magnetic colloids with tunable dipolar interactions, J. Non-Equilib. Thermodyn. 35 (2010), 35–50.

  • [6]

    A. Palumbo, A. Valenti and G. Lebon, Thermodynamics of suspensions of polymeric chains in dilute solutions, J. Non-Equilib. Thermodyn. 35 (2010), 181–194.

  • [7]

    L. Hadji, Modeling convection onset in colloidal suspensions of particles, J. Non-Equilib. Thermodyn. 36 (2011), 203–227.

  • [8]

    K. Binder, Spinodal decomposition in confined geometry, J. Non-Equilib. Thermodyn. 23 (1998), 1–44.

  • [9]

    P. Burgos-Madrigal, D. F. Mendoza and M. L. D. Haro, On entropy generation and the effect of hear and mass transfer coupling in a distillation process, J. Non-Equilib. Thermodyn. 43 (2017), 57–74.

  • [10]

    V. M. Barragan and S. Kjelstrup, Thermo-osmosis in membrane systems: A review, J. Non-Equilib. Thermodyn. 42 (2017), 217–236.

  • [11]

    E. E. Michaelides, Transport properties of nanofluids: A critical review, J. Non-Equilib. Thermodyn. 38 (2013), 1–79.

    • Crossref
    • Export Citation
  • [12]

    J. M. Ortiz-Zarate, F. Garcia-Lopez and J. I. Mengual, The effect of unstirred layers on thermoosmosis, J. Non-Equilib. Thermodyn. 14 (1989), 267–278.

  • [13]

    M. Marcoux and P. Costeseque, Study of transversal dimension influence on species separation in thermogravitational diffusion columns, J. Non-Equilib. Thermodyn. 32 (2007), 289–298.

  • [14]

    P. Blance, M. M. Bou-Ali, J. K. Platten, J. A. Madariaga, P. Urteaga and C. Santamaria, Thermodiffusion coefficient for binary liquid hydrocarbon mixtures, J. Non-Equilib. Thermodyn. 32 (2007), 309–317.

  • [15]

    G. Meriguet, G. Demouchy, E. Dubois, R. Perzynski and A. Bourdon, Experimental determination of the Soret coefficient of ionic ferrofluids: influence of the volume fraction and ionic strength, J. Non-Equilib. Thermodyn. 32 (2007), 271–279.

  • [16]

    A. Abbasi, M. Z. Saghir and M. Kawaji, Theoretical and experimental comparison of the Soret effect for binary mixtures of toluene and n-hexane, and benzene and n-heptane, J. Non-Equilib. Thermodyn. 35 (2010), 1–14.

    • Crossref
    • Export Citation
  • [17]

    A. Abbasi, M. Z. Saghir and M. Kawaji, An improved thermodiffusion model for ternary mixtures using Fujita’s free volume theory, J. Non-Equilib. Thermodyn. 36 (2011), 259–272.

  • [18]

    M. Eslamian and M. Z. Saghir, A critical review of thermodiffusion models: role and significance of the heat of transport and the activation energy of viscous flow, J. Non-Equilib. Thermodyn. 34 (2009), 97–131.

  • [19]

    G. Galliero, M. Bugal, B. Duguay and F. Montel, Mass effect on thermodiffusion using molecular dynamics, J. Non-Equilib. Thermodyn. 32 (2007), 251–258.

  • [20]

    M. R. Toosi and M. H. Pevrovi, Influence of molecular parameters on the thermodiffusion and thermal conductivity in binary mixtures of diatomic fluids using NEMD, J. Non-Equilib. Thermodyn. 34 (2009), 61–74.

  • [21]

    M. Zhang and F. Muller-Plathe, Reverse nonequilibrium molecular-dynamics calculation of the Soret coefficient in liquid benzene/cyclohexane mixtures, J. Chem. Phys. 123 (2005), 124502.

    • PubMed
    • Export Citation
  • [22]

    C. Nieto-Draghi, J. B. Avalos and B. Rousseau, Computing the Soret coefficient in aqueous mixtures using boundary driven nonequilibrium molecular dynamics, J. Chem. Phys. 122 (2005), 114503.

    • PubMed
    • Export Citation
  • [23]

    A. Perronace, C. Leppla, F. Leroy, B. Rousseau and S. Wigand, Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane-n-decane mixtures, J. Chem. Phys. 116 (2002), 3718–3729.

    • Crossref
    • Export Citation
  • [24]

    S. H. Mozaffari, S. Srinivasan and M. Z. Saghir, Thermodiffusion in binary and ternary hydrocarbon mixtures studied using a modified heat exchange algorithm, Therm. Sci. Eng. Prog. 4 (2017), 168–174.

    • Crossref
    • Export Citation
  • [25]

    S. Antoun, M. Z. Saghir and S. Srinivasan, An improved molecular dynamics algorithm to study thermodiffusion in binary hydrocarbon mixtures, J. Chem. Phys. 148 (2018), 104507.

    • PubMed
    • Export Citation
  • [26]

    F. A. Furtado, A. J. Silveira, C. R. A. Abreu and F. W. Tavares, Non-equilibrium molecular dynamics used to obtain Soret coefficients of binary hydrocarbon mixtures, Braz. J. Chem. Eng. 32 (2015), 683–698.

    • Crossref
    • Export Citation
  • [27]

    P. Wirnsberger, D. Frenkel and C. Dellago, An enhanced version of the heat exchange algorithm with excellent energy conservation properties, J. Chem. Phys. 143 (2015), 124104.

    • PubMed
    • Export Citation
  • [28]

    Z. A. Makrodimitri, D. J. M. Unruh and I. G. Economou, Molecular simulation of diffusion of hydrogen, carbon monoxide, and water in heavy n-alkanes, J. Phys. Chem. B 115 (2011), 1429–1439.

    • Crossref
    • PubMed
    • Export Citation
  • [29]

    T. Ikeshoji and B. Hafskjold, Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface, Mol. Phys. 81 (1994), 251–261.

    • Crossref
    • Export Citation
  • [30]

    F. Bresme, B. Hafskjold and I. Wold, Nonequilibrium molecular dynamics study of heat conduction in ionic systems, J. Phys. Chem. B 100 (1996), 1879–1888.

    • Crossref
    • Export Citation
  • [31]

    M. G. Martin and J. I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-Alkanes, J. Phys. Chem. B 102 (1998), 2569–2577.

    • Crossref
    • Export Citation
  • [32]

    W. M. Brown, P. Wang, S. J. Plimpton and A. N. Tharrington, Implementing molecular dynamics on hybrid high performance computers – short range forces, Comput. Phys. Commun. 182 (2011), 898–911.

    • Crossref
    • Export Citation
  • [33]

    G. Pranami and M. H. Lamm, Estimating error in diffusion coefficients derived from molecular dynamics simulations, J. Chem. Theory Comput. 11 (2015), 4586–4592.

    • Crossref
    • PubMed
    • Export Citation
  • [34]

    S. Kjelstrup, D. Bedeaux, I. Inzoli and J. M. Simon, Criteria for validity of thermodynamic equations from non-equilibrium molecular dynamics simulations, Energy 33 (2008), 1185–1196.

    • Crossref
    • Export Citation
  • [35]

    E. Fishman, Self-diffusion in liquid normal pentane and normal heptane, J. Phys. Chem. 59 (1955), 469–472.

    • Crossref
    • Export Citation
  • [36]

    M. Gehrig and H. Lentz, Values of p(V,T) for n-pentane in the range 5 to 250 MPa and 313 to 643 K, J. Chem. Thermodyn. 11 (1979), 291–300.

    • Crossref
    • Export Citation
  • [37]

    J. W. Mutoru, W. Smith, C. S. O’Hern and A. Firoozabadi, Molecular dynamics simulations of diffusion and clustering along critical isotherms of medium-chain n-alkanes, J. Chem. Phys. 138 (2013), 563.

  • [38]

    P. Blanco, P. Polyakov, M. M. Bou-Ali and S. Wiegand, Thermal diffusion and molecular diffusion values for some alkane mixtures: A comparison between thermogravitational column and thermal diffusion forced Rayleigh scattering, J. Phys. Chem. B 112 (2008), 8340–8345.

    • Crossref
    • PubMed
    • Export Citation
  • [39]

    J. W. Moore and R. M. Wellek, Diffusion coefficients of n-heptane and n-decane in n-alkanes and n-alcohols at several temperatures, J. Chem. Eng. Data 19 (1974), 136–140.

    • Crossref
    • Export Citation
  • [40]

    J. A. Young, n-Pentane, J. Chem. Educ. 86 (2009), 26.

  • [41]

    I. M. Smallwood, n-Decane, Handbook of Organic Solvent Properties 11 (1996), 23–25.

  • [42]

    G. Galliero, H. Bataller, J. P. Bazile, J. Diaz, F. Croccolo, H. Hoang, et al., Thermodiffusion in multicomponent n-alkane mixtures, NPJ Microgravity 3 (2017), 20.

    • Crossref
    • PubMed
    • Export Citation
  • [43]

    A. D. M. David, M. M. Bou-Ali, J. A. Madariaga and C. Santaria, Mass effect on the Soret coefficient in n-alkane mixtures, J. Chem. Phys. 140 (2014), 084503.

    • PubMed
    • Export Citation
  • [44]

    M. Chacha, D. Faruque, M. Z. Saghir and J. C. Legros, Solutal thermodiffusion in binary mixture in the presence of g-jitter, Int. J. Therm. Sci. 41 (2002), 899–911.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on non-equilibrium phenomena and on analytic or numeric modeling for their interpretation.

Search