Membrane Transport in Concentration Polarization Conditions: Evaluation of S-Entropy Production for Ternary Non-Electrolyte Solutions

  • 1 Department of Innovation and Safety Management Systems, Częstochowa University of Technology, 35B Armia Krajowa Al., Częstochowa, Poland
  • 2 Department of Biophysics, Faculty of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 H. Jordan Str., Zabrze, Poland
  • 3 Department of Informatics for Economics, University of Economics, 2B Bogucicka, Katowice, Poland
  • 4 Department of Health Science, Jan Dlugosz University, 13/15 Armia Krajowa Al., Częstochowa, Poland
  • 5 Department of Biochemistry, Biotechnology and Ecotoxicology, Jan Dlugosz University, 4/8 Waszyngton Str., Częstochowa, Poland
Andrzej ŚlęzakORCID iD: https://orcid.org/0000-0001-6818-2099, Sławomir GrzegorczynORCID iD: https://orcid.org/0000-0002-5248-3505, Kornelia M. BatkoORCID iD: https://orcid.org/0000-0001-6561-3826, Wiesław Pilis
  • Department of Health Science, Jan Dlugosz University, 13/15 Armia Krajowa Al., 42200, Częstochowa, Poland
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Robert Biczak
  • Department of Biochemistry, Biotechnology and Ecotoxicology, Jan Dlugosz University, 4/8 Waszyngton Str., 42200, Częstochowa, Poland
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

A model of the S-entropy production in a system with a membrane which separates non-electrolyte aqueous solutions was presented. The differences between fluxes in non-homogeneous and homogeneous conditions for volume and solute fluxes, respectively, are non-linear functions of the glucose osmotic pressure difference (OPD) in ranges dependent on the initial ethanol OPD. A decrease of ethanol OPD causes a shift of this range into the lower values of glucose OPD; this shift is also observed for negative values of glucose and ethanol OPDs. The coefficient of concentration polarization of the membrane as a function of glucose OPD has a sigmoidal shape. For suitably great negative values of glucose OPD this coefficient is very small, while for suitably high positive glucose OPD this coefficient is equal to 0.5. An increase of ethanol OPD at the initial moment causes a shift of this curve towards the direction of positive values of glucose OPD. In turn the S-entropy production in non-homogeneous conditions has low values for negative values of glucose OPD (convective range) while for suitably high positive glucose OPD it has greater values (diffusive and convective range). A change of ethanol OPD at the initial moment causes a shift of this curve along the horizontal axis.

  • [1]

    Katchalsky and P. F. Curran, Nonequilibrium Thermodynamics in Biophysics, Harvard, Cambridge, 1965.

  • [2]

    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations, Wiley-Interscience, New York, 1977.

  • [3]

    Y. Demirel, Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical and Biological System, Elsevier, Amsterdam, 2002.

  • [4]

    D. Kondepudi, Introduction to Modern Thermodynamics, J Wiley & Sons, Chichester, 2008.

  • [5]

    L. M. Martyushev and V. D. Seleznev, Maximum entropy production principle in physics, chemistry and biology, Phys. Rep. 426 (2006), no. 1, 1–45.

    • Crossref
    • Export Citation
  • [6]

    L. Peusner, Studies in Network Thermodynamics, Elsevier, Amsterdam, 1986.

  • [7]

    T. Tome and M. J. Oliveira, Entropy production in nonequilibrium systems at stationary state, Phys. Rev. Lett. 108 (2012), 020601.

  • [8]

    S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover, New York, 1984.

  • [9]

    M. Delmotte and J. Chanu, Non-equilibrium thermodynamics and membrane potential measurement in biology, in: G. Millazzo, editor, Topics Bioelectrochemistry and Bioenergetics, John Wiley Publish & Sons, Chichester, (1979), 307–359.

  • [10]

    B. Z. Ginzburg and A. Katchalsky, The frictional coefficients of the flows of non-electrolytes through artificial membranes, J. Gen. Physiol. 47 (1963), no. 2, 403–418.

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    A. Ślęzak, K. Dworecki and J. A. Anderson, Gravitational effects on transmembrane flux: The Rayleigh–Taylor convective instability, J. Membr. Sci. 23 (1985), no. 1, 71–81.

    • Crossref
    • Export Citation
  • [12]

    A. Ślęzak, Irreversible thermodynamic model equations of the transport across a horizontally mounted membrane, Biophys. Chem. 34 (1989), no. 2, 91–102.

    • Crossref
    • PubMed
    • Export Citation
  • [13]

    S. Przestalski and M. Kargol, Graviosmotic volume flow through membrane systems, Stud. Biophys. 34 (1972), no. 1, 7–14.

  • [14]

    M. Kargol, K. Dworecki and S. Przestalski, Graviosmotic flow amplification effects in a series membrane system, Stud. Biophys. 76 (1979), no. 2, 137–144.

  • [15]

    K. Dworecki, S. Wąsik and A. Ślęzak, Temporal and spatial structure of the concentration boundary layers in membrane system, Physica A 326 (2003) no. 3–4, 360–369.

    • Crossref
    • Export Citation
  • [16]

    K. Dworecki, A. Ślęzak, B. Ornal-Wąsik and S. Wąsik, Effect of hydrodynamic instabilities on solute transport in a membrane system, J. Membr. Sci. 265 (2005), no. 1–2, 94–100.

    • Crossref
    • Export Citation
  • [17]

    A. Ślęzak, K. Dworecki, I. H. Ślęzak and S. Wąsik, Permeability coefficient model equations of the complex: membrane-concentration boundary layers for ternary nonelectrolyte solutions, J. Membr. Sci. 267 (2005), no. 1–2, 50–57.

    • Crossref
    • Export Citation
  • [18]

    A. Ślęzak, I. Ślęzak-Prochazka, S. Grzegorczyn and J. Jasik-Ślęzak, Evaluation of S-entropy production in a single-membrane system in concentration polarization conditions, Transp. Porous Media 116 (2017), no. 2, 941–957.

    • Crossref
    • Export Citation
  • [19]

    A. Ślęzak, S. Grzegorczyn, J. Jasik-Ślęzak and K. Michalska-Małecka, Natural convection as an asymmetrical factor of the transport through porous membrane, Transp. Porous Media 84 (2010) no. 3, 685–698.

    • Crossref
    • Export Citation
  • [20]

    A. Ślęzak, I. H. Ślęzak and K. M. Ślęzak, Influence of the concentration boundary layers on membrane potential in single-membrane system, Desalination 184 (2005), no. 1–3, 113–123.

    • Crossref
    • Export Citation
  • [21]

    A. Kargol, Effect of boundary layers on reverse osmosis through a horizontal membrane, J. Membr. Sci. 159 (1999), 177–184.

    • Crossref
    • Export Citation
  • [22]

    P. H. Barry and J. M. Diamond, Effects of unstirred layers on membrane phenomena, Physiol. Rev. 647 (1984), no. 3, 763–872.

  • [23]

    J. Jasik-Ślęzak, K. Olszówka and A. Ślęzak, Estimation of thickness of concentration boundary layers by osmotic volume flux determination, Gen. Physiol. Biophys. 30 (2011), 186–195.

    • Crossref
    • PubMed
    • Export Citation
  • [24]

    Y. Demirel and S. I. Sandler, Thermodynamics and bioenergetics, Biophys. Chem. 97 (2002), no. 2–3, 87–111.

    • Crossref
    • PubMed
    • Export Citation
  • [25]

    A. Ślęzak, S. Grzegorczyn and K. M. Batko, Resistance coefficients of polymer membrane with concentration polarization, Transp. Porous Media 95 (2012), no. 1, 151–170.

    • Crossref
    • Export Citation
  • [26]

    K. Batko, I. Ślęzak-Prochazka, S. Grzegorczyn and A. Ślęzak, Membrane transport in concentration polarization conditions: network thermodynamics model equations, J. Porous Media 17 (2014), no. 7, 573–586.

    • Crossref
    • Export Citation
  • [27]

    K. Batko, I. Ślęzak-Prochazka and A. Ślęzak, Network hybrid form of the Kedem–Katchalsky equations for non-homogeneous binary non-electrolyte solutions: evaluation of P i j {P_{ij}} Peusner’s coefficients, Transp. Porous Media 106 (2015), no. 1, 1–20.

    • Crossref
    • Export Citation
  • [28]

    S. Grzegorczyn, A. Ślęzak, K. Michalska-Małecka and I. Ślęzak-Prochazka, Conditions of hydrodynamic instability appearance in fluid thin layers with changes in time thickness and density gradient, J. Non-Equilib. Thermodyn. 37 (2012), no. 1, 77–99.

  • [29]

    S. Grzegorczyn and A. Ślezak, Time characteristics of electromotive force in single-membrane cell for stable and unstable conditions of reconstructing of concentration boundary layers, J. Membr. Sci. 280 (2006), no. 1–2, 485–493.

    • Crossref
    • Export Citation
  • [30]

    J. de Valenca, M. Jogi, R. M. Wagterveld, E. Karatay, J. A. Wood and R. G. H. Lammertink, Cobfined electroconvective vortices at structured ion exchange membranes, Langmuir 34 (2018), no. 7, 2455–2463.

    • Crossref
    • PubMed
    • Export Citation
  • [31]

    V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, N. D. Pismenskaya, J. Han, P. Sistat, et al., Desalination at overlimiting currents: state-of-the-art and perspectives, Desalination 342 (2014), no. 2, 85–106.

    • Crossref
    • Export Citation
  • [32]

    T. Lohaus, N. Herkenhoff, R. Shankar and M. Wessling, Feed flow patterns of combined Rayleigh–Bénard convection and membrane permeation, J. Membr. Sci. 549 (2018), no. 1, 60–66.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on non-equilibrium phenomena and on analytic or numeric modeling for their interpretation.

Search