Entropy Generation in Magnetized Blood Flow Through a Finite Wavy Channel Under Slip Conditions

Lijun Zhang 1 , Muhammad Mubashir Bhatti 1 ,  and Efstathios E. Michaelides 2
  • 1 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China
  • 2 Department of Engineering, TCU, Fort Worth, USA
Lijun Zhang
  • College of Mathematics and Systems Science, 74789Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Muhammad Mubashir Bhatti
  • Corresponding author
  • College of Mathematics and Systems Science, 74789Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Efstathios E. Michaelides

Abstract

This study deals with the entropy generation in magnetized blood flow through a channel. The blood is modeled as a non-Newtonian fluid that circulates by a uniform peristaltic wave with slip at the boundaries. An inertia free flow is considered using an approximation of the long-wavelength peristaltic wave. The governing equations of the flow are formulated and numerically solved using computational software to identify the characteristics of this non-uniform and time-dependent flow system. In addition, several closed-form solutions of the problem are explicitly presented.

  • [1]

    D. Tripathi, A. Sharma, O. Anwar Bég and A. Tiwari, Electrothermal transport in biological systems: an analytical approach for electrokinetically modulated peristaltic flow, J. Therm. Sci. Eng. Appl. 9 (2017), 4.

  • [2]

    K. S. Mekheimer, B. Shankar and R. Abo-Elkhair, Effects of Hall current and permeability on the stability of peristaltic flow, SN Appl. Sci. 1 (2019), no. 12, 1610.

    • Crossref
    • Export Citation
  • [3]

    J. Prakash, N. Balaji, E. Siva and A. Chanrasekaran, Non-linear blood flow analysis on MHD peristaltic motion of a Williamson fluid in a micro channel, AIP Conf. Proc. 2112 (2019), 020048.

    • Crossref
    • Export Citation
  • [4]

    S. Mohammadein and A. Abu-Nab, Peristaltic flow of a newtonian fluid through a porous medium surrounded vapour bubble in a curved channel, J. Nanofluids 8 (2019), no. 3, 651–656.

    • Crossref
    • Export Citation
  • [5]

    M. Javed and R. Naz, Peristaltic flow of a realistic fluid in a compliant channel, Physica A 551 (2020), 123895.

  • [6]

    A. Sinha, G. Shit and N. Ranjit, Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity-slip and temperature jump, Alex. Eng. J. 54 (2015), no. 3, 691–704.

    • Crossref
    • Export Citation
  • [7]

    M. A. Abbas, Y. Bai, M. Bhatti and M. Rashidi, Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls, Alex. Eng. J. 55 (2016), no. 1, 653–662.

    • Crossref
    • Export Citation
  • [8]

    M. Raza, R. Ellahi, S. M. Sait, M. Sarafraz, M. Shadloo and I. Waheed, Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs, J. Therm. Anal. Calorim. 140 (2020), 1277–1291.

    • Crossref
    • Export Citation
  • [9]

    T. Hayat, J. Akram, H. Zahir and A. Alsaedi, Peristaltic motion of Sisko fluid in an inclined asymmetric tapered channel with nonlinear radiation, J. Therm. Anal. Calorim. 138 (2019), no. 1, 545–558.

    • Crossref
    • Export Citation
  • [10]

    V. Srivastava and M. Saxena, A two-fluid model of non-newtonian blood flow induced by peristaltic waves, Rheol. Acta 34 (1995), no. 4, 406–414.

    • Crossref
    • Export Citation
  • [11]

    D. Tripathi, A mathematical study on three layered oscillatory blood flow through stenosed arteries, J. Bionics Eng. 9 (2012), no. 1, 119–131.

    • Crossref
    • Export Citation
  • [12]

    M. M. Bhatti and A. Zeeshan, Study of variable magnetic field and endoscope on peristaltic blood flow of particle-fluid suspension through an annulus, Biomed. Eng. Lett. 6 (2016), no. 4, 242–249.

    • Crossref
    • Export Citation
  • [13]

    M. Bhatti, A. Zeeshan and N. Ijaz, Slip effects and endoscopy analysis on blood flow of particle-fluid suspension induced by peristaltic wave, J. Mol. Liq. 218 (2016), 240–245.

    • Crossref
    • Export Citation
  • [14]

    S. Shareghi and D. Toghraie, Numerical simulation of blood flow in healthy arteries by use of the Sisko model, Comput. Therm. Sci. Int. J. 8 (2016), 4.

  • [15]

    K. S. Mekheimer, W. Hasona, R. Abo-Elkhair and A. Zaher, Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy, Phys. Lett. A 382 (2018), no. 2-3, 85–93.

    • Crossref
    • Export Citation
  • [16]

    A. A. Dar, Effect of thermal radiation, temperature jump and inclined magnetic field on the peristaltic transport of blood flow in an asymmetric channel with variable viscosity and heat absorption/generation, Iran. J. Sci. Technol. Trans. Mech. Eng. (2020). . 15 pp.

    • Crossref
    • Export Citation
  • [17]

    J. Prakash, D. Tripathi, A. K. Tiwari, S. M. Sait and R. Ellahi, Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow, Symmetry 11 (2019), no. 7, 868.

    • Crossref
    • Export Citation
  • [18]

    A. Tanveer, T. Salahuddin, M. Khan, M. Malik and M. Alqarni, Theoretical analysis of non-newtonian blood flow in a microchannel, Comput. Methods Programs Biomed. 191 (2020), 105280.

  • [19]

    K. Ramesh, Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium, Comput. Methods Programs Biomed. 135 (2016), 1–14.

    • Crossref
    • Export Citation
  • [20]

    K. Vajravelu, S. Sreenadh and R. Saravana, Influence of velocity slip and temperature jump conditions on the peristaltic flow of a Jeffrey fluid in contact with a newtonian fluid, Appl. Math. Nonlinear Sci. 2 (2017), no. 2, 429–442.

    • Crossref
    • Export Citation
  • [21]

    J. Nandal, S. Kumari and R. Rathee, The effect of slip velocity on unsteady peristalsis MHD blood flow through a constricted artery experiencing body acceleration, Int. J. Appl. Mech. Eng. 24 (2019), no. 3, 645–659.

    • Crossref
    • Export Citation
  • [22]

    A. Riaz, S. U. -D. Khan, A. Zeeshan, S. U. Khan, M. Hassan and T. Muhammad, Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium, J. Therm. Anal. Calorim. (2020). . 13 pp.

    • Crossref
    • Export Citation
  • [23]

    M. Marin, E. -M. Craciun and N. Pop, Considerations on mixed initial-boundary value problems for micropolar porous bodies, Dyn. Syst. Appl. 25 (2016), no. 1-2, 175–196.

  • [24]

    A. Riaz, R. Ellahi, M. M. Bhatti and M. Marin, Study of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channel, Heat Transf. Res. 50 (2019), no. 16, 1539–1560.

    • Crossref
    • Export Citation
  • [25]

    M. Bhatti, R. Ellahi, A. Zeeshan, M. Marin and N. Ijaz, Numerical study of heat transfer and hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties, Mod. Phys. Lett. B 33 (2019), no. 35, 1950439.

    • Crossref
    • Export Citation
  • [26]

    A. Bejan, Second law analysis in heat transfer, Energy 5 (1980), no. 8-9, 720–732.

    • Crossref
    • Export Citation
  • [27]

    E. E. Michaelides and E. A. Michaelides, Entropy production, friction factors, and holdup in particulate two-phase flow in pipes, J. Non-Equilib. Thermodyn. 32 (2007), no. 2, 143–154.

  • [28]

    F. Bibi, T. Hayat, S. Farooq, A. Khan and A. Alsaedi, Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity, J. Therm. Anal. Calorim. (2019). . 13 pp.

    • Crossref
    • Export Citation
  • [29]

    S. Noreen and Q. U. Ain, Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping, J. Therm. Anal. Calorim. 137 (2019), no. 6, 1991–2006.

    • Crossref
    • Export Citation
  • [30]

    N. S. Akbar, Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field, Energy 82 (2015), 23–30.

    • Crossref
    • Export Citation
  • [31]

    S. Asha and C. Deepa, Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel, Results Eng. 3 (2019), 100024.

  • [32]

    N. Ranjit, G. Shit and D. Tripathi, Entropy generation and joule heating of two layered electroosmotic flow in the peristaltically induced micro-channel, Int. J. Mech. Sci. 153 (2019), 430–444.

  • [33]

    M. A. Abbas, Y. Bai, M. Rashidi and M. Bhatti, Application of drug delivery in magnetohydrodynamics peristaltic blood flow of nanofluid in a non-uniform channel, J. Mech. Med. Biol. 16 (2016), no. 04, 1650052.

    • Crossref
    • Export Citation
  • [34]

    H. M. Shawky, Pulsatile flow with heat transfer of dusty magnetohydrodynamic Ree-Eyring fluid through a channel, Heat Mass Transf. 45 (2009), no. 10, 1261–1269.

    • Crossref
    • Export Citation
  • [35]

    L. Srivastava and V. Srivastava, Peristaltic transport of blood: Casson model – II, J. Biomech. 17 (1984), no. 11, 821–829.

    • Crossref
    • PubMed
    • Export Citation
  • [36]

    A. H. Shapiro, M. Y. Jaffrin and S. L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number, J. Fluid Mech. 37 (1969), no. 4, 799–825.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on non-equilibrium phenomena and on analytic or numeric modeling for their interpretation.

Search