Cystic fibrosis-related diabetes: an update on pathophysiology, diagnosis, and treatment

Crésio Alves 1 , Thais Della-Manna 2 ,  and Cristiano Tulio Maciel Albuquerque 3
  • 1 Pediatric Endocrinology Unit, Hospital Universitario Prof. Edgard Santos, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
  • 2 Pediatric Endocrinology Unit, Instituto da Criança, Hospital das Clínicas, Faculty of Medicine, University of São Paulo (ICr-HC-FMUSP), São Paulo, Brazil
  • 3 Pediatric Endocrinology, Hospital Infantil João Paulo II – Fundação Hospitalar do Estado de Minas Gerais (HIJPII/MG – FHEMIG), Belo Horizonte, Brazil
Crésio Alves
  • Corresponding author
  • Pediatric Endocrinology Unit, Hospital Universitario Prof. Edgard Santos, Faculty of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Thais Della-Manna
  • Pediatric Endocrinology Unit, Instituto da Criança, Hospital das Clínicas, Faculty of Medicine, University of São Paulo (ICr-HC-FMUSP), São Paulo, Brazil
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Cristiano Tulio Maciel Albuquerque
  • Pediatric Endocrinology, Hospital Infantil João Paulo II – Fundação Hospitalar do Estado de Minas Gerais (HIJPII/MG – FHEMIG), Belo Horizonte, Minas Gerais, Brazil
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Cystic fibrosis (CF) is a highly prevalent autosomal recessive disorder that is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene (7q31.2), which encodes the CFTR chloride-anion channel that is expressed in several tissues. Life expectancy has increased significantly over the past few decades due to therapeutic advances and early diagnosis through neonatal screening. However, new complications have been identified, including CF-related diabetes (CFRD). The earliest detectable glycemic abnormality is postprandial hyperglycemia that progresses into fasting hyperglycemia. CFRD is associated with a decline in lung function, impairments in weight gain and growth, pubertal development, and increased morbidity and mortality. Annual screening with oral glucose tolerance test is recommended beginning at the age of 10, and screenings are recommended for any age group during the first 48 h of hospital admission. Fasting plasma glucose levels ≥126 mg/dL (7.0 mmol/L) or 2-h postprandial plasma glucose levels ≥200 mg/dL (11.1 mmol/L) that persist for more than 48 h are diagnostic criteria for CFRD. Under stable health condition, the diagnosis is made when laboratory abnormalities in accordance with the American Diabetes Association criteria are detected for the first time; however, levels of HbA1c <6.5% do not rule out the diagnosis. Treatment for CFRD includes insulin replacement and a hypercaloric and hyperproteic diet that does not restrict carbohydrates, fats or salt, and diabetes self-management education. The most important CFRD complications are nutritional and pulmonary disease deterioration, though the microvascular complications of diabetes have already been described.

  • 1.

    Bell, SC, Mall, MA, Gutierrez, H, Macek, M, Madge, S, Davies, JC, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med 2020;8:65–124. https://doi.org/10.1016/S2213-2600(19)30337-6.

    • Crossref
    • Export Citation
  • 2.

    Sanders, DB, Fink, A. Background and epidemiology. Pediatr Clin North Am 2016;63:567–84. https://doi.org/10.1016/j.pcl.2016.04.001.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    Raskin, S, Pereira-Ferrari, L, Reis, FC, Abreu, F, Marostica, P, Rozov, T, et al. Incidence of cystic fibrosis in five different states of Brazil as determined by screening of p.F508del, mutation at the CFTR gene in newborns and patients. J Cyst Fibros 2008;7:15–22. https://doi.org/10.1016/j.jcf.2007.03.006.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Silva Filho, LV, Castaños, C, Ruíz, HH. Cystic fibrosis in Latin America–Improving the awareness. J Cyst Fibros 2016;15:791–3. https://doi.org/10.1016/j.jcf.2016.05.007.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Grupo Brasileiro de Estudos em Fibrose Cística. Registro Brasileiro de Fibrose Cística; 2017. Available from: http://portalgbefc.org.br/wp-content/uploads/2019/12/Registro2017.pdf.

  • 6.

    Kayani, K, Mohammed, R, Mohiaddin, H. Cystic fibrosis-related diabetes. Front Endocrinol (Lausanne) 2018;9:20. https://doi.org/10.3389/fendo.2018.00020.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Moran, A, Dunitz, J, Nathan, B, Saeed, A, Holme, B, Thomas, W. Cystic fibrosis-related diabetes current trends in prevalence, incidence, and mortality. Diabetes Care 2009;32:1626–31. https://doi.org/10.2337/dc09-0586.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Onady, GM, Stolfi, A. Insulin and oral agents for managing cystic fibrosis-related diabetes. Cochrane Database Syst Rev 2016;4:CD004730. https://doi.org/10.1002/14651858.CD004730.pub4.

    • PubMed
    • Export Citation
  • 9.

    Rey, MM, Bonk, MP, Hadjiliadis, D. Cystic fibrosis: emerging understanding and therapies. Annu Rev Med 2019;70:197–210. https://doi.org/10.1146/annurev-med-112717-094536.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Marunaka, Y. The mechanistic links between insulin and cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Int J Mol Sci 2017;18:1767–808. https://doi.org/10.3390/ijms18081767.

    • Crossref
    • Export Citation
  • 11.

    Abensur, AR, Ferreira LVR, L, Vergara, AA, Ribeiro, AF, Riedi, CA, Procianoy, EFA, Adde, FV. Diretrizes Brasileiras de Diagnóstico e Tratamento Da Fibrose Cística. J Bras Pneumol 2017;43:219–45.

  • 12.

    Banavath, LN, Kumar, R, Dayal, D, Yadav, J, Sachdeva, N, Mathew, JL, et al. Glucose intolerance in children with cystic fibrosis: a developing country’s perspective. J Pediatr Endocrinol Metab 2018;31:1139–46. https://doi.org/10.1515/jpem-2018-0222.

    • Crossref
    • PubMed
    • Export Citation
  • 13.

    Hart, NJ, Aramandla, R, Poffenberger, G, Fayolle, C, Thames, AH, Bautista, A, et al. Cystic fibrosis-related diabetes is caused by islet loss and inflammation. JCI Insight 2018;3:e98240. https://doi.org/10.1172/jci.insight.98240.

    • PubMed
    • Export Citation
  • 14.

    Granados, A, Chan, CL, Ode, KL, Moheet, A, Moran, A, Holl, R. Cystic fibrosis related diabetes: Pathophysiology, screening and diagnosis. J Cyst Fibros 2019;18:S3–9. https://doi.org/10.1016/j.jcf.2019.08.016.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Bogdani, M, Blackman, SM, Ridaura, C, Bellocq, JP, Powers, AC, Aguilar-Bryan, L. Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci Rep 2017;7:17231. https://doi.org/10.1038/s41598-017-17404-z.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Koivula, FN, McClenaghan, NH, Harper, AG, Kelly, C. Islet-intrinsic effects of CFTR mutation. Diabetologia 2016;59:1350–5. https://doi.org/10.1007/s00125-016-3936-1.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Edlund, A, Esguerra, JL, Wendt, A, Flodstrom-Tullberg, M, Eliasson, L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic-cells. BMC Med 2014;12:87. https://doi.org/10.1186/1741-7015-12-87.

    • Crossref
    • Export Citation
  • 18.

    Ntimbane, T, Mailhot, G, Spahis, S, Rabasa-Lhoret, R, Kleme, ML, Melloul, D, et al. CFTR silencing in pancreatic b-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response. Am J Physiol Endocrinol Metab 2016;310:E200–12. https://doi.org/10.1152/ajpendo.00333.2015.

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    Blackman, SM, Commander, CW, Watson, C, Arcara, KM, Strug, LJ, Stonebraker, JR, et al. Genetic modifiers of cystic fibrosis-related diabetes. Diabetes 2013;62:3627–35. https://doi.org/10.2337/db13-0510.

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Janson, J, Ashley, RH, Harrison, D, McIntyre, S, Butler, PC. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999;48:491–8. https://doi.org/10.2337/diabetes.48.3.491.

    • Crossref
    • PubMed
    • Export Citation
  • 21.

    Kuo, P, Stevens, JE, Russo, A, Maddox, A, Wishart, JM, Jones, KL, et al. Gastric emptying, incretin hormone secretion, and postprandial glycemia in cystic fibrosis-effects of pancreatic enzyme supplementation. J Clin Endocrinol Metab 2011;96:E851–5. https://doi.org/10.1210/jc.2010-2460.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    Moran, A, Pillay, K, Becker, D, Granados, A, Hameed, S, Acerini, CL. ISPAD Clinical Practice Consensus Guidelines 2018 compendium management of cystic fibrosis related diabetes in children and adolescents. Pediatr Diabetes. 2018;19:64–74. https://doi.org/10.1111/pedi.12732.

    • Crossref
    • Export Citation
  • 23.

    Moran, A, Becker, D, Casella, SJ, Gottlieb, PA, Kirkman, MS, Marshall, BC, et al. Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: a technical review. Diabetes Care 2010;33:2677–83. https://doi.org/10.2337/dc10-1279.

    • Crossref
    • PubMed
    • Export Citation
  • 24.

    Boudreau, V, Coriati, A, Desjardins, K, Rabasa-Lhoret, R. Glycated hemoglobin cannot yet be proposed as a screening tool for cystic fibrosis related diabetes. J Cyst Fibros 2016;15:258–60. https://doi.org/10.1016/j.jcf.2016.02.005.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Chan, CL, Hope, E, Thurston, J, Vigers, T, Pyle, L, Zeitler, PS, et al. Hemoglobin A1c accurately predicts continuous glucose monitoring-derived average glucose in youth and young adults with cystic fibrosis. Diabetes Care 2018;41:1406–13. https://doi.org/10.2337/dc17-2419.

    • Crossref
    • Export Citation
  • 26.

    O’Riordan, SM, Hindmarsh, P, Hill, NR, Matthews, DR, George, S, Greally, P, et al. Vali-dation of continuous glucose monitoring in children and adolescents with cystic fibrosis: a prospective cohort study. Diabetes Care 2009;32:1020–2. https://doi.org/10.2337/dc08-1925.

    • Crossref
    • PubMed
    • Export Citation
  • 27.

    Franzese, A, Valerio, G, Buono, P, Spagnuolo, MI, Sepe, A, Mozzillo, E, et al. Continuous glucose monitoring system in the screening of early glucose derangements in children and adolescents with cystic fibrosis. J Pediatr Endocrinol Metab 2008;21:109–16. https://doi.org/10.1515/jpem.2008.21.2.109.

    • PubMed
    • Export Citation
  • 28.

    Clemente León, M, Bilbao Gassó, L, Moreno-Galdó, A, Campos Martorrell, A, Gartner Tizzano, S, Yeste Fernández, D, et al. Oral glucose tolerance test and continuous glucose monitoring to assess diabetes development in cystic fibrosis patients. Endocrinol Diabetes Nutr 2018;65:45–51. https://doi.org/10.1016/j.endien.2018.01.001.

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Mainguy, C, Bellon, G, Delaup, V, Ginoux, T, Kassai-Koupai, B, Mazur, S, et al. Sensitivity and specificity of different methods for cystic fibrosis-related diabetes screening: is the oral glucose tolerance test still the standard? J Pediatr Endocrinol Metab 2017;30:27–35. https://doi.org/10.1515/jpem-2016-0184.

    • PubMed
    • Export Citation
  • 30.

    Chan, CL, Ode, KL, Granados, A, Moheet, A, Moran, A, Hameed, S. Continuous glucose monitoring in cystic fibrosis - A practical guide. J Cyst Fibros 2019;18:S25–31. https://doi.org/10.1016/j.jcf.2019.08.025.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    Ode, KL, Chan, CL, Granados, A, Moheet, A, Moran, A, Brennan, AL. Cystic fibrosis related diabetes: Medical management. J Cyst Fibros 2019;18:S10–18. https://doi.org/10.1016/j.jcf.2019.08.003.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Sunni, M, Bellin, MD, Moran, A. Exogenous insulin requirements do not differ between youth and adults with cystic fibrosis related diabetes. Pediatr Diabetes 2013;14(4):295–8. https://doi.org/10.1111/pedi.1201.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    American Diabetes Association. 13. Children and adolescents: standards of medical care in diabetes-2019. Diabetes Care 2019;42:S139–47.

    • Crossref
    • Export Citation
  • 34.

    Mauch, RM, Pezzo Kmit, AH, Marson, FAL, Levy, CE, Barros-Filho, AA, Ribeiro, JD. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: a literature review. Rev Paul Pediatr. 2016;34:503–9. https://doi.org/10.1016/j.rppede.2016.02.001.

    • PubMed
    • Export Citation
  • 35.

    Birch, L, Lithander, FE, Hewer, SL, Harriman, K, Hamilton-Shield, J, Perry, R. Dietary interventions for managing glucose abnormalities in cystic fibrosis. Syst Rev 2018;7:98. https://doi.org/10.1186/s13643-018-0757-y.

    • Crossref
    • PubMed
    • Export Citation
  • 36.

    Ballmann, M, Hubert, D, Assael, BM, Staab, D, Hebestreit, A, Naehrlich, L, et al. Repaglinide versus insulin for newly diagnosed diabetes in patients with cystic fibrosis: a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 2018;6:114–21. https://doi.org/10.1016/s2213-8587(17)30400-x.

    • Crossref
    • PubMed
    • Export Citation
  • 37.

    Geyer, MC, Sullivan, T, Tai, A, Morton, JM, Edwards, S, Martin, AJ, et al. Exenatide corrects postprandial hyperglycaemia in young people with cystic fibrosis and impaired glucose tolerance: a randomized crossover trial. Diabetes Obes Metab 2019;21:700–4. https://doi.org/10.1111/dom.13544.

    • Crossref
    • Export Citation
  • 38.

    Gentzsch, M, Mall, MA. Ion channel modulators in cystic fibrosis. Chest 2018;154:383–93. https://doi.org/10.1016/j.chest.2018.04.036.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Ramsey, BW, Davies, J, McElvaney, NG, Tullis, E, Bell, SC, Dřevínek, P, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011;365:1663–72. https://doi.org/10.1056/nejmoa1105185.

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Rey, MM, Bonk, MP, Hadjiliadis, D. Cystic fibrosis: emerging understanding and therapies. Annu Rev Med 2019;70:197–210. https://doi.org/10.1146/annurev-med-112717-094536.

    • Crossref
    • PubMed
    • Export Citation
  • 41.

    Wainwright, CE, Elborn, JS, Ramsey, BW, Marigowda, G, Huang, X, Cipolli, M, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 2015;373:220–31. https://doi.org/10.1056/nejmoa1409547.

    • Crossref
    • PubMed
    • Export Citation
  • 42.

    Boyle, MP, Bell, SC, Konstan, MW, McColley, SA, Rowe, SM, Rietschel, E, et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2014;2:527–38. https://doi.org/10.1016/s2213-2600(14)70132-8.

    • Crossref
    • Export Citation
  • 43.

    Taylor-Cousar, JL, Munck, A, McKone, EF, van der Ent, CK, Moeller, A, Simard, C, et al. Tezacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med 2017;377:2013–23. https://doi.org/10.1056/nejmoa1709846.

    • Crossref
    • PubMed
    • Export Citation
  • 44.

    Donaldson, SH, Pilewski, JM, Griese, M, Cooke, J, Viswanathan, L, Tullis, E, et al. Tezacaftor/ivacaftor in subjects with cystic fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am J Respir Crit Care Med 2018;197:214–24. https://doi.org/10.1164/rccm.201704-0717oc.

    • Crossref
    • PubMed
    • Export Citation
  • 45.

    Gentzsch, M, Mall, MA. Ion channel modulators in cystic fibrosis. Chest 2018;154:383–93. https://doi.org/10.1016/j.chest.2018.04.036.

    • Crossref
    • PubMed
    • Export Citation
  • 46.

    Bellin, MD, Laguna, T, Leschyshyn, J, Regelmann, W, Dunitz, J, Billings, J, et al. Insulin secretion improves in cystic fibrosis following ivacaftor correction of CFTR: a small pilot study. Pediatr Diabetes 2013;14:417–21. https://doi.org/10.1111/pedi.12026.

    • Crossref
    • PubMed
    • Export Citation
  • 47.

    Kelly, A, De Leon, DD, Sheikh, S, Camburn, D, Kubrak, C, Peleckis, AJ, et al. Islet hor-mone and incretin secretion in cystic fibrosis after four months of Ivacaftor therapy. Am J Respir Crit Care Med 2019;199:342–51. https://doi.org/10.1164/rccm.201806-1018oc.

    • Crossref
    • Export Citation
  • 48.

    Moheet, A, Moran, A. Pharmacological management of cystic fibrosis related diabetes. Expert Rev Clin Pharmacol 2018;11:185–91. https://doi.org/10.1080/17512433.2018.1421065.

    • Crossref
    • PubMed
    • Export Citation
  • 49.

    Lewis, C, Blackman, SM, Nelson, A, Oberdorfer, E, Wells, D, Dunitz, J, et al. Diabetes-related mortality in adults with cys-tic fibrosis. Role of genotype and sex. Am J Respir Crit Care Med 2015;191:194–200. https://doi.org/10.1164/rccm.201403-0576oc.

    • Crossref
    • PubMed
    • Export Citation
  • 50.

    Mauch, RM, Pezzo Kmit, AH, Marson, FAL, Levy, CE, Barros-Filho, AA, Ribeiro, JD. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: a literature review. Rev Paul Pediatr 2016;34: 503–9. https://doi.org/10.1016/j.rppede.2016.02.001.

    • PubMed
    • Export Citation
  • 51.

    Terliesner, N, Vogel, M, Steighardt, A, Gausche, R, Henn, C, Hentschel, J, et al. Cystic-fibrosis related-diabetes (CFRD) is preceded by and associated with growth failure and deteriorating lung function. J Pediatr Endocrinol Metab 2017;30:815–21. https://doi.org/10.1515/jpem-2017-0005.

    • PubMed
    • Export Citation
  • 52.

    Yoon, JC. Evolving mechanistic views and emerging therapeutic strategies for cystic fibrosis–related diabetes. J Endocr Soc 2017;1:1386–400. https://doi.org/10.1210/js.2017-00362.

    • Crossref
    • PubMed
    • Export Citation
  • 53.

    Hunt, WR, Helfman, BR, McCarty, NA, Hansen, JM. Advanced glycation end products are elevated in cystic fibrosis-related diabetes and correlate with worse lung function. J Cyst Fibros 2016;15(5):681–8. https://doi.org/10.1016/j.jcf.2015.12.011.

    • Crossref
    • PubMed
    • Export Citation
  • 54.

    Scheuing, N, Badenhoop, K, Borkenstein, M, Konrad, K, Lilienthal, E, Laubner, K, et al. Why is insulin pump treatment rarely used in adolescents and young adults with cystic fibrosis-related diabetes? Pediatr Diabetes 2015;16:10–5. https://doi.org/10.1111/pedi.12158.

    • Crossref
    • Export Citation
  • 55.

    Piechowiak, K, Trippenbach-Dulska, H, Walicka-Serzysko, K. The course of glucose intolerance in children with cystic fibrosis: a retrospective study-preliminary report. Dev Period Med 2015;19:80–91.

    • PubMed
    • Export Citation
  • 56.

    Lonabaugh, KP, O’Neal, KS, McIntosh, H, Condren, M. Cystic fibrosis-related education: are we meeting patient and caregiver expectations? Patient Educ Couns 2018;101:1865–70. https://doi.org/10.1016/j.pec.2018.06.004.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Pediatric Endocrinology and Metabolism (JPEM) is the only international journal dedicated exclusively to endocrinology in the neonatal, pediatric and adolescent age groups, and publishes the results of clinical investigations in pediatric endocrinology and basic research. JPEM publishes Review Articles, Original Research, Case Reports, Short Communications and Letters to the Editor.

Search