Comparison of image quality in brain MRI with and without MR compatible incubator and predictive value of brain MRI at expected delivery date in preterm babies

Franziska Müller 1 , Hans Proquitté 2 , Karl-Heinz Herrmann 3 , Thomas Lehmann 4 ,  and Hans-Joachim Mentzel 1
  • 1 Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University hospital Jena, Jena, Germany
  • 2 Section of Neonatology, Department of Pediatrics, University hospital Jena, Jena, Germany
  • 3 Section of Medical Physics, Institute of Diagnostic and Interventional Radiology, University hospital Jena, Jena, Germany
  • 4 Institute of Medical Statistics, Information Sciences and Documentation, University hospital Jena, Jena, Germany
Franziska Müller
  • Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University hospital Jena, Jena, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Hans Proquitté
  • Section of Neonatology, Department of Pediatrics, University hospital Jena, Jena, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Karl-Heinz Herrmann
  • Section of Medical Physics, Institute of Diagnostic and Interventional Radiology, University hospital Jena, Jena, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Thomas Lehmann
  • Institute of Medical Statistics, Information Sciences and Documentation, University hospital Jena, Jena, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Hans-Joachim Mentzel
  • Corresponding author
  • Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University hospital Jena, Jena, Germany
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Objectives

MR compatible incubators (MRcI) offer the examination of preterm and critically ill infants in controlled environment. The aim of the study was to compare objective and subjective image quality as well as diagnostic value of MRI brain examinations with and without using the MRcI. Thus, predictive value of brain MRI at expected delivery date in general was investigated.

Methods

This retrospective study included MRI brain examinations conducted at patients’ corrected age ≤6 months and presence of four standard sequences (PD TSE transversal, T2 TSE transversal, T2 TSE sagittal and T1 SE transversal). Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) was calculated. Subjective image quality was estimated using a 5-point Likert scale. Findings of MRI were compared with those of previous transfontanellar ultrasound because of additional diagnostic information. Severe brain abnormality scaled by score of Kidokoro was related to results of Munich Functional Developmental Diagnostics (MFDD) within first year.

Results

One hundred MRI brain examinations (76 with MRcI, 24 without MRcI) were performed in 79 patients. Using the MRcI SNR and CNR were significantly higher in PD- and in T2-weighted sequences (p<0.05). TSE PD transversal demonstrated a higher risk of non-diagnostic quality using MRcI (OR 5.23; 95%-CI 1.86–14.72). MRcI revealed additional diagnostic information (OR 5.69; 95%-CI 1.15–28.24). Severe brain abnormality was associated with walking deficits (r=0.570; p=0.021).

Conclusions

The MRcI increased objective image quality and revealed additional diagnostic information to transfontanellar ultrasound. Nevertheless, prediction of infants' future development remains limited.

  • 1.

    Dumoulin, CL, Rohling, KW, Piel, JE, Rossi, CJ, Giaquinto, RO, Watkins, RD, et al. Magnetic resonance imaging compatible neonate incubator. Concepts Magn Reson 2002;15:117–28. https://doi.org/10.1002/cmr.10028.

    • Crossref
    • Export Citation
  • 2.

    LMT Medical Systems GmbH. MR incubator system. 2018; Available from: https://www.lmt-medicalsystems.com/en/products/mr-diagnostics-incubator-system.html?file=files/contentelemets/downloads/brochures/Brochure_english.pdf [accessed 22 Oct 2018].

  • 3.

    Blüml, S, Friedlich, P, Erberich, S, Wood, JC, Seri, I, Nelson, MD. MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency coils: initial experience. Radiology 2004;231:594–601. https://doi.org/10.1148/radiol.2312030166.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Erberich, SG, Friedlich, P, Seri, I, Nelson, MD, Blüml, S. Functional MRI in neonates using neonatal head coil and MR compatible incubator. Neuroimage 2003;20:683–92. https://doi.org/10.1016/s1053-8119(03)00370-7.

    • Crossref
    • Export Citation
  • 5.

    Bekiesińska-Figatowska, M, Szkudlińska-Pawlak, S, Romaniuk-Doroszewska, A, Duczkowski, M, Iwanowska, B, Duczkowska, A, et al. First experience with neonatal examinations with the use of MR-compatible incubator. Pol J Radiol 2014;79:268–74. https://doi.org/10.12659/pjr.890371.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Cho, HH, Kim, IO, Cheon, JE, Choi, YH, Lee, SM, Kim, WS. Changes in brain magnetic resonance imaging patterns for preterm infants after introduction of a magnetic resonance-compatible incubator coil system: 5-year experience at a single institution. Eur J Radiol 2016;85:1564–8. https://doi.org/10.1016/j.ejrad.2016.06.007.

    • Crossref
    • Export Citation
  • 7.

    Sirin, S, Goericke, SL, Huening, BM, Stein, A, Kinner, S, Felderhoff-Mueser, U, et al. Evaluation of 100 brain examinations using a 3 Tesla MR-compatible incubator-safety, handling, and image quality. Neuroradiology 2013;55:1241–9. https://doi.org/10.1007/s00234-013-1241-y.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Antonov, NK, Ruzal-Shapiro, CB, Morel, KD, Millar, WS, Kashyap, S, Lauren, CT, et al. Feed and wrap MRI technique in infants. Clin Pediatr 2016;56:1095–103. https://doi.org/10.1177/0009922816677806.

  • 9.

    Hüning, B, Sirin, S, Schweiger, B, Schara, U, Felderhoff-Mueser, U. Neuroimaging in neonatology: role of MRI. Neuropaediatrie 2014;13:70–80.

  • 10.

    Kidokoro, H, Anderson, PJ, Doyle, LW, Woodward, LJ, Neil, JJ, Inder, TE. Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics 2014;134:e444–53. https://doi.org/10.1542/peds.2013-2336.

    • Crossref
    • PubMed
    • Export Citation
  • 11.

    Horsch, S, Skiöld, B, Hallberg, B, Nordell, B, Nordell, A, Mosskin, M, et al. Cranial ultrasound and MRI at term age in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed 2010;95:F310. https://doi.org/10.1136/adc.2009.161547.

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Weishaupt, D, Köchli, VD, Marincek, B, Fröhlich, JM. Wie funktioniert MRI? eine Einführung in Physik und Funktionsweise der Magnetresonanzbildgebung; mit 9 Tabellen. Berlin [u.a.]: Springer; 2014. Available from: http://dx.doi.org/10.1007/978-3-642-41616-3.

  • 13.

    DiFrancesco, MW, Rasmussen, JM, Yuan, W, Pratt, R, Dunn, S, Dardzinski, BJ, et al. Comparison of SNR and CNR for in vivo mouse brain imaging at 3 and 7 T using well matched scanner configurations. Med Phys 2008;35:3972–8. https://doi.org/10.1118/1.2968092.

    • Crossref
    • Export Citation
  • 14.

    Kidokoro, H, Neil, JJ, Inder, TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol 2013;34:2208–14. https://doi.org/10.3174/ajnr.a3521.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Paley, MN, Hart, AR, Lait, M, Griffiths, PD. An MR-compatible neonatal incubator. Br J Radiol 2012;85:952–8. https://doi.org/10.1259/bjr/30017508.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Rona, Z, Klebermass, K, Cardona, F, Czaba, CD, Brugger, PC, Weninger, M, et al. Comparison of neonatal MRI examinations with and without an MR-compatible incubator: advantages in examination feasibility and clinical decision-making. Eur J Paediatr Neurol 2010;14:410–7. https://doi.org/10.1016/j.ejpn.2010.03.005.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Tocchio, S, Kline-Fath, B, Kanal, E, Schmithorst, VJ, Panigrahy, A. MRI evaluation and safety in the developing brain. Semin Perinatol 2015;39:73–104. https://doi.org/10.1053/j.semperi.2015.01.002.

    • Crossref
    • PubMed
    • Export Citation
  • 18.

    Arthurs, OJ, Edwards, A, Austin, T, Graves, MJ, Lomas, DJ. The challenges of neonatal magnetic resonance imaging. Pediatr Radiol 2012;42:1183–94. https://doi.org/10.1007/s00247-012-2430-2.

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    O’Regan, K, Filan, P, Pandit, N, Maher, M, Fanning, N. Image quality associated with the use of an MR-compatible incubator in neonatal neuroimaging. Br J Radiol 2012;85:363–7. https://doi.org/10.1259/bjr/66148265.

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Kaufman, L, Kramer, DM, Crooks, LE, Ortendahl, DA. Measuring signal-to-noise ratios in MR imaging. Radiology 1989;173:265–7. https://doi.org/10.1148/radiology.173.1.2781018.

    • Crossref
    • PubMed
    • Export Citation
  • 21.

    Whitby, EH, Griffiths, PD, Lonneker-Lammers, T, Srinivasan, R, Connolly, DJ, Capener, D, et al. Ultrafast magnetic resonance imaging of the neonate in a magnetic resonance-compatible incubator with a built-in coil. Pediatrics 2004;113:e150–2. https://doi.org/10.1542/peds.113.2.e150.

    • Crossref
    • Export Citation
  • 22.

    Bekiesińska-Figatowska, M, Helwich, E, Rutkowska, M, Stankiewicz, J, Terczyńska, I. Magnetic resonance imaging of neonates in the magnetic resonance compatible incubator. Arch Med Sci 2016;12:1064–70. https://doi.org/10.5114/aoms.2016.61913.

    • PubMed
    • Export Citation
  • 23.

    van Wezel-Meijler, G. Ultrasound detection of white matter injury in very preterm neonates: practical implications. 1469–;8749 (Electronic). Dev Med Child Neurol 2011;53(Suppl 4):29–34. https://doi.org/10.1111/j.1469-8749.2011.04060.x.

    • Crossref
    • PubMed
    • Export Citation
  • 24.

    Melbourne, L, Murnick, J, Chang, T, Glass, P, Massaro, AN. Regional brain biometrics at term-equivalent age and developmental outcome in extremely low-birth-weight infants. Am J Perinatol 2015;32:1177–84. https://doi.org/10.1055/s-0035-1552936.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Hintz, SR, Barnes, PD, Bulas, D, Slovis, TL, Finer, NN, Wrage, LA, et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics 2015;135:e32–42. https://doi.org/10.1542/peds.2014-0898.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Lind, A, Parkkola, R, Lehtonen, L, Munck, P, Maunu, J, Lapinleimu, H, et al. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children. Pediatr Radiol 2011;41:953–61. https://doi.org/10.1007/s00247-011-2071-x.

    • Crossref
    • PubMed
    • Export Citation
  • 27.

    Young, JM, Morgan, BR, Powell, TL, Moore, AM, Whyte, HE, Smith, ML, et al. Associations of perinatal clinical and magnetic resonance imaging measures with developmental outcomes in children born very preterm. J Pediatr 2016;170:90–6. https://doi.org/10.1016/j.jpeds.2015.11.044.

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Voss, W, Hobbiebrunken, E, Ungermann, U, Wagner, M, Damm, G. The development of extremely premature infants. Deutsches Arzteblatt Int 2016;113:871–8. https://doi.org/10.3238/arztebl.2016.0871.

  • 29.

    Hintz, SR, Vohr, BR, Bann, CM, Taylor, HG, Das, A, Gustafson, KE, et al. Preterm neuroimaging and school-age cognitive outcomes. Pediatrics 2018;142. https://doi.org/10.1542/peds.2017-4058.

    • PubMed
    • Export Citation
  • 30.

    Skiold, B, Eriksson, C, Eliasson, AC, Aden, U, Vollmer, B. General movements and magnetic resonance imaging in the prediction of neuromotor outcome in children born extremely preterm. Early Hum Dev 2013;89:467–72. https://doi.org/10.1016/j.earlhumdev.2013.03.014.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    Setänen, S, Lahti, K, Lehtonen, L, Parkkola, R, Maunu, J, Saarinen, K, et al. Neurological examination combined with brain MRI or cranial US improves prediction of neurological outcome in preterm infants. Early Hum Dev 2014;90:851–6. https://doi.org/10.1016/j.earlhumdev.2014.09.007.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Cnaan, A, Laird, NM, Slasor, P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med 1997;16:2349–80. https://doi.org/10.1002/(sici)1097-0258(19971030)16:20<2349::aid-sim667>3.0.co;2-e.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Jones, BC, Nair, G, Shea, CD, Crainiceanu, CM, Cortese, IC, Reich, DS. Quantification of multiple-sclerosis-related brain atrophy in two heterogeneous MRI datasets using mixed-effects modeling. Neuroimage Clin 2013;3:171–9. https://doi.org/10.1016/j.nicl.2013.08.001.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    Holland, BA, Haas, DK, Norman, D, Brant-Zawadzki, M, Newton, TH. MRI of normal brain maturation. AJNR Am J Neuroradiol 1986;7:201–8. 3082150.

    • PubMed
    • Export Citation
  • 35.

    Reuner, G. Entwicklungsdiagnostik im Säuglings- und Kleinkindalter. Monatsschr Kinderheilkd 2006;154:305–13. https://doi.org/10.1007/s00112-006-1315-6.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Perinatal Medicine is a truly international forum covering the entire field of perinatal medicine. It is an essential news source for all those obstetricians, neonatologists, perinatologists and allied health professionals who wish to keep abreast of progress in perinatal and related research.

Search