Evaluating Automatic Model Selection

Jennifer L. Castle 1 , Jurgen A Doornik 2  and David F. Hendry 3
  • 1 University of Oxford
  • 2 University of Oxford
  • 3 University of Oxford

We outline a range of criteria for evaluating model selection approaches that have been used in the literature. Focusing on three key criteria, we evaluate automatically selecting the relevant variables in an econometric model from a large candidate set. General-to-specific selection is outlined for a regression model in orthogonal variables, where only one decision is required to select, irrespective of the number of regressors. Comparisons with an automated model selection algorithm, Autometrics (Doornik, 2009), show similar properties, but not restricted to orthogonal cases. Monte Carlo experiments examine the roles of post-selection bias corrections and diagnostic testing as well as evaluate selection in dynamic models by costs of search versus costs of inference.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Time Series Econometrics (JTSE) serves as an internationally recognized outlet for important new research in both theoretical and applied classical and Bayesian time series, spatial and panel data econometrics. The scope of the journal includes papers dealing with estimation, testing and other methodological aspects involved in the application of time series and spatial analytic techniques to economic, financial and related data.

Search