Noncausal Autoregressions for Economic Time Series

Markku Lanne 1  und Pentti Saikkonen 2
  • 1 University of Helsinki
  • 2 University of Helsinki

This paper is concerned with univariate noncausal autoregressive models and their potential usefulness in economic applications. In these models, future errors are predictable, indicating that they can be used to empirically approach rational expectations models with nonfundamental solutions. In the previous theoretical literature, nonfundamental solutions have typically been represented by noninvertible moving average models. However, noncausal autoregressive and noninvertible moving average models closely approximate each other, and therefore, the former provide a viable and practically convenient alternative. We show how the parameters of a noncausal autoregressive model can be estimated by the method of maximum likelihood and derive related test procedures. Because noncausal autoregressive models cannot be distinguished from conventional causal autoregressive models by second order properties or Gaussian likelihood, a model selection procedure is proposed. As an empirical application, we consider modeling the U.S. inflation which, according to our results, exhibits purely forward-looking dynamics.

Artikel kaufen
Erhalten sie sofort unbegrenzten Zugriff auf den Artikel.
Haben Sie den Zugang bereits erworben? Melden Sie sich bitte an.

Zugriff über Ihre Institution

Zeitschrift + Hefte

The Journal of Time Series Econometrics (JTSE) serves as an internationally recognized outlet for important new research in both theoretical and applied classical and Bayesian time series, spatial and panel data econometrics. The scope of the journal includes papers dealing with estimation, testing and other methodological aspects involved in the application of time series and spatial analytic techniques to economic, financial and related data.