A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models

Márcio Poletti Laurini 1
  • 1 Department of Economics, FEA-RP USP and associated researcher at CNPq, Ribeirão Preto, São Paulo, Brazil
Márcio Poletti Laurini

Abstract: In this article, we analyze a maximum likelihood estimator using Data Cloning for Stochastic Volatility models. This estimator is constructed using a hybrid methodology based on Integrated Nested Laplace Approximations to calculate analytically the auxiliary Bayesian estimators with great accuracy and computational efficiency, without requiring the use of simulation methods such as Markov Chain Monte Carlo. We analyze the performance of this estimator compared to methods based on Monte Carlo simulations (Simulated Maximum Likelihood, MCMC Maximum Likelihood) and approximate maximum likelihood estimators using Laplace Approximations. The results indicate that this data cloning methodology achieves superior results over methods based on MCMC, comparable to results obtained by the Simulated Maximum Likelihood estimator. The methodology is extended to models with leverage effects, continuous time formulations, multifactor and multivariate stochastic volatility.

  • Andersen, T., and B. Sorensen. 1996. “GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study.” Journal of Business and Economic Statistics 14(3):32852.

    • Google Scholar
    • Export Citation
  • Andersen, T. G., R. A. Davis, J.-P. Kreib, and T. Mikosch, eds. 2009. Handbook of Financial Time Series. New York: Springer.

    • Google Scholar
    • Export Citation
  • Asai, M., M. McAleer, and J. Yu. 2006. “Multivariate Stochastic Volatility: A Review.” Econometric Reviews 25(2–3):14575.

    • Crossref
    • Google Scholar
    • Export Citation
  • Baghishani, H., H. Rue, and M. Mohammadzadeh. 2012. “On a Hybrid Data Cloning Method and Its Application in Generalized Linear Mixed Models.” Statistics and Computing 22(2):597613.

    • Crossref
    • Google Scholar
    • Export Citation
  • Baghishani, H., and M. Mohammadzadeh. 2011. “A Data Cloning Algorithm for Computing Maximum Likelihood Estimates in Spatial Generalized Linear Mixed Models.” Computational Statistics and Data Analysis 55(4):174859.

    • Crossref
    • Google Scholar
    • Export Citation
  • Bakshi, G., C. Cao, and Z. Chen. 1995. “Empirical Performance of Alternative Option Pricing Models.” Journal of Finance 52(5):200349.

    • Crossref
    • Google Scholar
    • Export Citation
  • Barndorff-Nielsen, O. E. 1997. “Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling.” Scandinavian Journal of Statistics 24(1):113.

    • Crossref
    • Google Scholar
    • Export Citation
  • Bates, D. 1996. “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.” Review of Financial Studies 9(1):69107.

    • Crossref
    • Google Scholar
    • Export Citation
  • Broto, C. and E. Ruiz. 2004. “Estimation Methods for Stochastic Volatility Methods: A Survey.” Journal of Economic Surveys 18(5):61349.

    • Crossref
    • Google Scholar
    • Export Citation
  • Chernov, M., E. Gallant, R. A. Ghysels, and G. Tauchen. 2003. “Alternative Models for Stock Price Dynamics.” Journal of Econometrics 116(1–2):22557.

    • Crossref
    • Google Scholar
    • Export Citation
  • Chernozhukov, V., and H. Hong. 2004. “Likelihood Estimation and Inference in a Class of Nonregular Econometric Models.” Econometrica 72(5):144580.

    • Crossref
    • Google Scholar
    • Export Citation
  • Chib, S., Y. Omori, and M. Asai. 2009. “Multivariate Stochastic Volatility Models.” In Handbook of Financial Time Series, edited by T. G. Andersen, R. A. Davis, J.-P. Kreib, and T. Mikosch, 365402. New York: Springer.

    • Crossref
    • Google Scholar
    • Export Citation
  • Doucet, A., A. J. Godsill, and C. P. Robert. 2002. “Marginal Maximum a Posteriori Estimation using Markov Chain Monte Carlo.” Statistics and Computing 12(1):7784.

    • Crossref
    • Google Scholar
    • Export Citation
  • Doucet, A., and C. P. Robert. 2002. “Maximum a Posteriori Parameter Estimation for Hidden Markov Models.” Unpublished Working Paper.

    • Export Citation
  • Duffie, J., and J. Pan. 1997. “An Overview of Value at Risk.” The Journal of Derivatives 4(3):749.

  • Eberlein, E., J. Kallsen, and J. Kristen 2003. “Risk Management Based on Stochastic Volatility.” Journal of Risk 5(2):1944.

    • Crossref
    • Google Scholar
    • Export Citation
  • Gallant, R. A., and G. Tauchen. 1996. “Which Moments to Match.” Econometric Theory 12(4):65781.

  • Geweke, J. 1994. “Bayesian Comparison of Econometric Models.” Minneapolis: Federal Reserve of Minneapolis.

    • Export Citation
  • Gourieroux, C. A., A. Monfort, and E. Renault. 1993. “Indirect Inference.” Journal of Applied Econometrics 8(1):85118.

    • Crossref
    • Google Scholar
    • Export Citation
  • Harvey, A. C., E. Ruiz, and N. G. Shephard. 1994. “Multivariate Stochastic Variance Models.” Review of Economic Studies 61(2):24764.

    • Crossref
    • Google Scholar
    • Export Citation
  • Harvey, A. C., and N. Shephard. 1996. “Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns.” Journal of Business and Economic Statistics 14(4):42934.

    • Google Scholar
    • Export Citation
  • Heston, S. 1993. “A Closed Form Solution for Options with Stochastic Volatility, with Applications to Bond and Currency Options.” Review of Financial Studies 6(2):32743.

    • Crossref
    • Google Scholar
    • Export Citation
  • Hull, J., and A. White. 1987. “The Pricing of Options on Assets with Stochastic Volatility.” Journal of Finance 42(2):130.

    • Crossref
    • Google Scholar
    • Export Citation
  • Jacquier, E., M. Johannes, and N. Polson. 2007. “MCMC Maximum Likelihood for Latent State Models.” Journal of Econometrics 137(2):61540.

    • Crossref
    • Google Scholar
    • Export Citation
  • Jacquier, E., N. Polson, and P. E. Rossi. 1994. “Bayesian Analysis of Stochastic Volatility Models (with Discussions).” Journal of Business and Economic Statistics 12(4):371417.

    • Google Scholar
    • Export Citation
  • Jacquier, E., N. Polson, and P. E. Rossi. 2004. “Bayesian Analysis of Stochastic Volatility Models with Fat-Tails and Correlated Errors.” Journal of Econometrics 122(1):185212.

    • Crossref
    • Google Scholar
    • Export Citation
  • Johannes, M., and N. Polson. 2009. “MCMC Methods for Financial Time Series.” In Handbook of Financial Time Series, edited by T. G. Andersen, R. A. Davis, J.-P. Kreib, and T. Mikosch. New York: Springer.

    • Google Scholar
    • Export Citation
  • Jungbacker, B., and S. J. Koopman. 2009. “Parameter Estimation and Practical Aspects of Modeling Stochastic Volatility.” In Handbook of Financial Time Series, edited by T. G. Andersen, R. A. Davis, J.-P. Kreib, and T. Mikosch, 31344. New York: Springer.

    • Crossref
    • Google Scholar
    • Export Citation
  • Kim, S., N. Shepard, and S. Chib. 1998. “Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models.” Review of Economic Studies 65(3):36193.

    • Crossref
    • Google Scholar
    • Export Citation
  • Koopman, S. J., M. I. P. Mallee, and M. Van der Wel. 2010. “Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson-Siegel Model with Time-Varying Parameters.” Journal of Business and Economic Statistics 28(3):32943.

    • Crossref
    • Google Scholar
    • Export Citation
  • Lele, S. R., B. Dennis, and F. Lutscher. 2007. “Data Cloning: Easy Maximum Likelihood Estimation for Complex Ecological Models using Bayesian Markov Chain Monte Carlo Estimation.” Ecology Letters 10: 55163.

    • Crossref
    • PubMed
    • Google Scholar
    • Export Citation
  • Lele, S. R., K. Nadeem, and B. Schmuland. 2010. “Estimability and Likelihood Inference for Generalized Linear Mixed Models using Data Cloning.” Journal of the American Statistical Association 105(492):161725.

    • Crossref
    • Google Scholar
    • Export Citation
  • Liesenfeld, R., and J. Richard. 2003. “Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics.” Journal of Empirical Finance 10(4):50531.

    • Crossref
    • Google Scholar
    • Export Citation
  • Martino, S., K. Aasb, O. Lindqvist, L. R. Neef, and H. Rue. 2011. “Estimating Stochastic Volatility Models using Integrated Nested Laplace Approximations.” The European Journal of Finance 17(7):487503.

    • Crossref
    • Google Scholar
    • Export Citation
  • McNeil, A., R. Frey, and P. Embrechts. 2005. Quantitative Risk Management. Princeton, NJ: Princeton University Press.

    • Google Scholar
    • Export Citation
  • Melino, A., and S. M. Turnbull. 1990. “Pricing Foreign Currency Options with Stochastic Volatility.” Journal of Econometrics 45(1–2):23965.

    • Crossref
    • Google Scholar
    • Export Citation
  • Monfardini, C. 1998. “Estimating Stochastic Volatility Models through Indirect Inference.” Econometrics Journal 1(1):11328.

    • Crossref
    • Google Scholar
    • Export Citation
  • Poulsen, R., K. R. Schenk-Hoppe, and C. Ewald. 2009. “Risk Minimization in Stochastic Volatility Models: Model Risk and Empirical Performance.” Quantitative Finance 6: 693704.

    • Crossref
    • Google Scholar
    • Export Citation
  • Renault, E. 2009. “Moment-Based Estimation of Stochastic Volatility Models.” In Handbook of Financial Time Series, edited by T. G. Andersen, R. A. Davis, J.-P. Kreib, and T. Mikosch, 269311. New York: Springer.

    • Crossref
    • Google Scholar
    • Export Citation
  • Robert, C. P. 2010. “Feedback on Data Cloning.” Comment—http://xianblog.wordpress.com/2010/09/22/feedback-on-data-cloning/. Accessed 22 September, 2010.

    • Export Citation
  • Rue, H., S. Martino, and N. Chopin. 2009. “Approximated Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations (with Discussion).” Journal of the Royal Statistical Society series B 71(2):31992.

    • Crossref
    • Google Scholar
    • Export Citation
  • Ruiz-Cardenas, R., E. T. Krainski, and H. Rue. 2012. “Direct Fitting of Dynamic Models using Integrated Nested Laplace Approximations.” Computational Statistics and Data Analysis 56(6):180828.

    • Crossref
    • Google Scholar
    • Export Citation
  • Sandmann, G., and S. J. Koopman. 1998. “Estimation of Stochastic Volatility Models Via Monte Carlo Maximum Likelihood.” Journal of Econometrics 87(2):271301.

    • Crossref
    • Google Scholar
    • Export Citation
  • Schobel, R., and J. Zhu. 1999. “Stochastic Volatility with an Ornstein-Uhlenbeck Process: An Extension.” European Finance Review 3(1):2346.

    • Crossref
    • Google Scholar
    • Export Citation
  • Shephard, N., and M. K. Pitt. 1997. “Likelihood Analysis of Non-Gaussian Measurement Time Series.” Biometrika 84(3):65368.

    • Crossref
    • Google Scholar
    • Export Citation
  • Shephard, N. G. 1993. “Fitting Non-linear Time Series Models, with Applications to Stochastic Variance Models.” Journal of Applied Econometrics 8: 13552.

    • Crossref
    • Google Scholar
    • Export Citation
  • Singleton, K. J. 2006. Empirical Dynamic Asset Pricing. Princeton, NJ: Princeton University Press.

  • Skaug, H. J., and D. Fournier. 2006. “Automatic Approximation of the Marginal Likelihood in Non-Gaussian Hierarchical Models.” Computational Statistics and Data Analysis 51(2):699709.

    • Crossref
    • Google Scholar
    • Export Citation
  • Skaug, H. J., and J. Yu. 2008. “Automatic Likelihood Based Inference for Stochastic Volatility Models.” Unpublished Working Paper.

    • Export Citation
  • Stein, E. M., and J. C. Stein. 1991. “Stock Price Distributions with Stochastic Volatility: An Analytic Approach.” The Review of Financial Studies 4(4):72752.

    • Crossref
    • Google Scholar
    • Export Citation
  • Takada, T. 2009. “Simulated Minimum Hellinger Distance Estimation of Stochastic Volatility Models.” Computational Statistics and Data Analysis 53(6):2390403.

    • Crossref
    • Google Scholar
    • Export Citation
  • Taylor, S. J. 1986. Modelling Financial Time Series. New York: John Wiley & Sons.

  • Tierney, L., and J. B. Kadane. 1986. “Accurate Approximations for Posterior Moments and Marginal Densities.” Journal of the American Statistical Association 81(392):82086.

    • Crossref
    • Google Scholar
    • Export Citation
  • Tsyplakov, A. 2010. “Revealing the Arcane: An Introduction to the Art of Stochastic Volatility Models.” Quantile 8: 69122.

    • Google Scholar
    • Export Citation
  • Vassilis, A. H. 1999. “Some Practical Issues in Maximum Simulated Likelihood.” Simulation-Based Inference in Econometrics: Methods and Applications. Cambridge: Cambridge University Press.

    • Google Scholar
    • Export Citation
  • Walker, A. M. 1969. “On the Asymptotic Behavior of Posterior Distributions.” Journal of the Royal Statistical Association, Series B 31(1):8088.

    • Google Scholar
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Time Series Econometrics (JTSE) serves as an internationally recognized outlet for important new research in both theoretical and applied classical and Bayesian time series, spatial and panel data econometrics. The scope of the journal includes papers dealing with estimation, testing and other methodological aspects involved in the application of time series and spatial analytic techniques to economic, financial and related data.

Search