Organic electrochromic molecules: synthesis, properties, applications and impact

  • 1 Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
Monika Stolar
  • Corresponding author
  • Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Organic electronics are at the forefront of modern research, with goals of creating more efficient and environmentally benign devices. Organic molecules can achieve this as they typically result in materials that are solution-processable and less toxic than their transition-metal counterparts. Electrochromic molecules have unique color changing properties upon passing an electrical current making them highly sought after for colored displays, dimming mirrors, and smart windows. Part of my PhD work was devoted to developing a new class of electrochromic molecules, the phosphoryl-bridged viologens, with more favorable redox properties and new color changing modes. In order to understand the necessity and potential of new electrochromes, it is important to assess the history of the field and its future. In addition to designing new molecules for electrochromic devices, it is equally important to design a multifunctional species with a bright, competitive future across various organic electronic applications.

  • [1]

    R. Mercier, O. Bohnke, C. Bohnke, G. Robert, B. Carquille, M. F. Mercier. Mater. Res. Bull. 18, 1 (1983).

    • Crossref
    • Export Citation
  • [2]

    P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky. Electrochromism: Fundamentals and Applications, VHC-Wiley, Weinhein (1995).

  • [3]

    J. R. Platt. J. Chem. Phys. 34, 862 (1961).

  • [4]

    Berzelius, J. J. Afhandlingar i fysik. Kemi Och Mineralogie, 4, 293 (1815).

  • [5]

    A. Bain. UK Patent, (1843).

  • [6]

    P. M. S. Monk, R. J. Mortimer. D. R. Rosseinsky. Electrochromism and Electrochromic Devices, Cambridge University Press (2007).

  • [7]

    Philips Ltd. British Patent 1,302,000 (1971).

  • [8]

    M. Green. Chem. Ind. 17, 641 (1996).

  • [9]

    H. Sariçayir, M. Uce, A. Koca. J. Chem. Educ. 87, 205 (2010).

  • [10]

    M. Schott, M. Beck, F. Winkler, H. Lorrmann, D. G. Kurth. J. Chem. Educ. 92, 364 (2015).

    • Crossref
    • Export Citation
  • [11]

    T. Abdinejad, M. R. Zamanloo, T. Aliadeh, N. O. Mahmoodi, S. R. Pouran. J. Chem. Educ. 95, 1642 (2018).

    • Crossref
    • Export Citation
  • [12]

    X. Guo, A. Facchetti, T. J. Marks. Chem. Rev. 114, 8943 (2014).

  • [13]

    F. Bella, G. Leftheriotis, G. Griffini, G. Syrrokostas, S. Turri, M. Gräzel, C. Gerbaldi. Adv. Funct. Mater. 26, 1127 (2016).

    • Crossref
    • Export Citation
  • [14]

    C. G. Granqvist. Sol. Energy Mater. Sol. Cells 91, 1529 (2007).

    • Crossref
    • Export Citation
  • [15]

    Y. Wang, E. L. Runnerstorm, D. J. Milliron. Annu. Rev. Chem. Biomol. Eng. 7, 283 (2016).

    • Crossref
    • PubMed
    • Export Citation
  • [16]

    J. Kim, G. K. Ong, Y. Wang, G. LeBlanc, T. E. Williams, T. M. Mattox, B. A. Helms, D. J. Milliron. Nano Lett. 15, 5574 (2015).

    • Crossref
    • PubMed
    • Export Citation
  • [17]

    S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka, U. S. Schubert. Chem. Rev. 116, 9438 (2016).

    • Crossref
    • PubMed
    • Export Citation
  • [18]

    M. Park, J. Ryu, W. Wang, J. Cho. Nat. Rev. Mater. 2, 16080 (2016).

  • [19]

    T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert. Nature 527, 78 (2015).

    • Crossref
    • PubMed
    • Export Citation
  • [20]

    H. Chen, G. Cong, Y.-C. Lu. J. Energy Chem. 27, 1304 (2018).

    • Crossref
    • Export Citation
  • [21]

    S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer. Chem. Rev. 115, 10081 (2015).

    • Crossref
    • PubMed
    • Export Citation
  • [22]

    N. A. Romero, D. A. Nicewicz. Chem. Rev. 116, 10075 (2016).

  • [23]

    C. L. Bird, A. T. Kuhn. Chem. Soc. Rev. 10, 49 (1981).

  • [24]

    L. Michaelis, E. S. Hill. J. Gen. Physiol. 16, 859 (1933).

  • [25]

    P. M. S. Monk. The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine, Wiley, Chichester (1998).

  • [26]

    J. A. Farrington, A. Ledwith, M. F. Stam. J. Chem. Soc. D. Chem. Commun. 259 (1969).

  • [27]

    P. M. S. Monk. J. Electroanal. Chem. 432, 175 (1997).

  • [28]

    R. J. Mortimer. Electrochim. Acta 44, 2971 (1999).

  • [29]

    P. M. Beaujuge, J. R. Reynolds. Chem. Rev. 110, 268 (2010).

  • [30]

    R. J. Mortimer. Chem. Soc. Rev. 26, 147 (1997).

  • [31]

    G. Bar, N. Larina, L. Grinis, V. Lokshin, R. Gvishi, I. Kiryuschev, A. Zaban, V. Khodorkovsky. Sol. Energy Mater. Sol. Cells 99, 123 (2012).

    • Crossref
    • Export Citation
  • [32]

    M. I. Attalla, L. A. Summers. Heterocyclic Chem. 22, 751 (1985).

    • Crossref
    • Export Citation
  • [33]

    A. Launikonis, A. W.-H. Mau, W. H. F. Sasse, L. A. Summers. J. Chem. Soc. Chem. Commun. 1645 (1986).

  • [34]

    S. Durben, T. Baumgartner. Angew. Chem. Int. Ed. 50, 7948 (2011).

    • Crossref
    • Export Citation
  • [35]

    T. Baumgartner. Acc. Chem. Res. 47, 1613 (2014).

  • [36]

    M. Stolar, J. Borau-Garcia, M. Toonen, T. Baumgartner. J. Am. Chem. Soc. 137, 3366 (2015).

    • Crossref
    • PubMed
    • Export Citation
  • [37]

    C. Reus, M. Stolar, J. Vanderkley, J. Nebauer, T. Baumgartner. J. Am. Chem. Soc. 137, 11710 (2015).

    • Crossref
    • PubMed
    • Export Citation
  • [38]

    A. N. Nesmeyanov, L. G. Makarova, T. P. Tolstaya. Tetrahedron. 1, 145 (1957).

    • Crossref
    • Export Citation
  • [39]

    M. Stolar, T. Buamgartner. Chem. Commun. 54, 3311 (2018).

  • [40]

    L. Adriaenssens, L. Severa, T. Šálová, I. Císařová, R. Pohl, D. Šaman, S. V. Rocha, N. S. Finney, L. Pospíšil, P. Slavíček, F. Teplý. Chem. Eur. J. 15, 1072 (2009).

    • Crossref
    • Export Citation
  • [41]

    X. Zhang, E. L. Clennan, T. Petek, J. Weber. Tetrahedron, 73, 508 (2017).

    • Crossref
    • Export Citation
  • [42]

    L. E. R. Buckley, B. J. Coe, D. Rusanova, V. D. Joshi, S. Sánchez, M. Jirásek, J. Vávra, D. Khobragade, L. Severa, I. Císařová, D. Šaman, R. Pohl, K. Clays, G. Depotter, B. S. Brunschwig, F. Teplý. J. Phys. Chem. A 121, 5842 (2017).

    • PubMed
    • Export Citation
  • [43]

    N. Sprutta, M. Swiderska, L. Latos-Grażyński. J. Am. Chem. Soc. 127, 13108 (2005).

    • Crossref
    • PubMed
    • Export Citation
  • [44]

    N. Sprutta, M. Siczek, L. Latos-Grażyński, M. Pawlicki, L. Szterenberg, T. Lis. J. Org. Chem. 72, 9501 (2007).

    • Crossref
    • PubMed
    • Export Citation
  • [45]

    S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou. Macromolecules 38, 307 (2005).

    • Crossref
    • Export Citation
  • [46]

    E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams. J. Am. Chem. Soc. 88, 3498 (1966).

    • Crossref
    • Export Citation
  • [47]

    S.-H. Hsiao, Y.-Z. Chen. Dyes Pigments 144, 173 (2017).

  • [48]

    G. A. Corrente, E. Fabiano, F. Manni, G. Chidichimo, G. Gigli, A. Beneduci, A.-L. Capodilupo. Chem. Mater. 30, 5610 (2018).

    • Crossref
    • Export Citation
  • [49]

    F. B. Kaufman, E. M. Engler. J. Am. Chem. Soc. 101, 739 (1979).

  • [50]

    F. B. Kaufman, J. B. Torrance, J. A. Scott, B. Welber, P. Seiden. Phys. Rev. B19 730 (1979).

  • [51]

    S. K. Keshri, D. Asthana, S. Chorol, Y. Kumar, P. Mukhopadhyay. Chem. Eur. J. 24, 1821 (2018).

    • Crossref
    • Export Citation
  • [52]

    L. Wojcik, F. Michaud, S. Gauthier, N. Cabon, P. Le Poul, F. Gloaguen, N. Le Poul. J. Org. Chem. 82, 12395 (2017).

    • Crossref
    • PubMed
    • Export Citation
  • [53]

    P. W. Antoni, M. M. Hansmann. J. Am. Chem. Soc. 140, 14823 (2018).

Purchase article
Get instant unlimited access to the article.
$25.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Pure and Applied Chemistry is the official monthly Journal of the International Union of Pure and Applied Chemistry (IUPAC), with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union.

Search