Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 15, 2018

Flavin photocatalysis

  • Burkhard König , Susanne Kümmel , Eva Svobodová and Radek Cibulka EMAIL logo
From the journal Physical Sciences Reviews

Abstract

Thanks to rapid development in the last decades, flavins have been recognized as promising photoactive compounds to design new valuable synthetic methodologies based on photoredox catalysis. The review summarizes general photochemical properties of flavins as well as their early applications in transformations mediated by visible light. Special attention has been paid to the catalyst design for benzylic oxidations as well as to recent flavin applications, for example in E/Z-isomerization, [2+2] cycloaddition, cycloelimination, electrophilic chlorination and sulfide oxidation.

References

[1] Edwards AM. General Properties of Flavins. In: Silva E, Edwards AM, Eds. Flavins: photochemistry and Photobiology. Cambridge: The Royal Society of Chemistry, 2006:1–11.Search in Google Scholar

[2] (a) Losi A, Gartner W. Bacterial bilin- and flavin-binding photoreceptors. Photochem Photobiol Sci. 2008;7:1168–78. (b) Losi A. Flavin-based blue-light photosensors: a photobiophysics update. Photochem. Photobiol. 2007;83:1283–300.10.1039/b802472cSearch in Google Scholar PubMed

[3] (a) Baldwin TO, Christopher JA, Raushel FM, Sinclair JF, Ziegler MM, Fisher AJ, et al. Structure of bacterial luciferase. Curr Opin Struct Biol. 1995;5:798–809. (b) Wilson T. and Hasting JW. Bioluminescence. Annu. Rev. Cell Dev. Biol. 1998;14:197–230.10.1016/0959-440X(95)80014-XSearch in Google Scholar PubMed

[4] (a) Heelis PF, Hartman RF, Rose SD. Photoenzymic repair of UV-damaged DNA: a chemist’s perspective. Chem Soc Rev. 1995;24:289. (b) Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 2003;103:2203–37.10.1039/cs9952400289Search in Google Scholar

[5] Murov SL, Carmichael I, Hug GL. Handbook of Photochemistry. New York: CRC Press, 1993.Search in Google Scholar

[6] (a) Fukuzumi S, Kojima T. Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding. J Biol Inorg Chem. 2008;13:321–33. (b) Jordan BJ, Cooke G, Garety JF, Pollier MA, Kryvokhyzha N, Bayir A, Rabani G, Rotello VM. Polymeric model systems for flavoenzyme activity: towards synthetic flavoenzymes. Chem Commun. 2007;1248–50; (c) Mansoorabadi SO, Thibodeaux CJ, Liu HW. The diverse roles of flavin coenzymes – nature’s most versatile thespians. J. Org. Chem. 2007;72:6329–42; (d) Breinlinger E, Niemz A, Rotello VM. Model systems for flavoenzyme activity – stabilization of the flavin radical-anion through specific hydrogen-bond interactions. J. Am. Chem. Soc. 1995;117:5379–80; (e) Cooke G, Legrand YM, Rotello VM. Model systems for flavoenzyme activity: an electrochemically tuneable model of roseoflavin. Chem. Commun.2004;1088–9; (f) Legrand YM, Gray M, Cooke G, Rotello VM. Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties. J. Am. Chem. Soc. 2003;125:15789–95.10.1007/s00775-008-0343-1Search in Google Scholar PubMed

[7] (a) Carell T, Burgdorf L, Butenandt J, Epple R, Schwogler A. DNA repair: from model compounds to artificial enzymes. Bioorg Chem. 1999;27:242–54. (b) Harrison CB, O’Neil LL, Wiest O. Computational studies of DNA photolyase. J. Phys. Chem. A. 2005;109:7001–12.Search in Google Scholar

[8] (a) Kemal C, Bruice TC. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: preliminary studies of a model for bacterial luciferase. Proc Natl Acad Sci USA. 1976;73:995–9. (b) Kemal C, Bruice TC. Chemiluminescence accompanying the decomposition of 4a-flavin alkyl peroxide. Model studies of bacterial luciferase. J. Am. Chem. Soc. 1977;99:7064–7; (c) Zhou D, Mirzakulova E, Khatmullin R, Schapiro I, Olivucci M, Glusac KD. Fast excited-state deactivation in N(5)-ethyl-4a-hydroxyflavin pseudobase. J. Phys. Chem. B.2011;115:7136–43.10.1073/pnas.73.4.995Search in Google Scholar PubMed PubMed Central

[9] Blyth AW. LVI. – the composition of cows’ milk in health and disease. J Chem Soc., Trans. 1879;35:530–9.10.1039/CT8793500530Search in Google Scholar

[10] Kuhn R, Weygand F. Synthetisches vitamin B2. Chem Ber. 1934;67:2084–5.10.1002/cber.19340671231Search in Google Scholar

[11] Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR, et al. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem. 2001;276:36493–500.10.1074/jbc.M103114200Search in Google Scholar PubMed

[12] Sadeghian K, Bocola M, Schütz M. A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors. J Am Chem Soc. 2008;130:12501–13.10.1021/ja803726aSearch in Google Scholar PubMed

[13] Schmaderer H, Svoboda J, König B. Flavin photocatalysts with substrate binding sites. In: Bolm C, Hahn E, Eds. Activating Unreactive Substrates: the Role of Secondary Interactions. Weinheim: Wiley-VCH, 2009:349–58.10.1002/9783527625468.ch19Search in Google Scholar

[14] Ghisla S, Kenney WC, Knappe WR, McIntire W, Singer TP. Chemical synthesis and some properties of 6-substituted flavins. Biochemistry. 1980;19:2537–44.10.1021/bi00553a001Search in Google Scholar PubMed

[15] König B, Pelka M, Zieg H, Ritter T, Bouas-Laurent H, Bonneau R, et al. Photoinduced electron transfer in a phenothiazine−riboflavin dyad assembled by zinc−imide coordination in water. J Am Chem Soc. 1999;121:1681–7.10.1021/ja9836693Search in Google Scholar

[16] Islam SD, Penzkofer A, Hegemann P. Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Phot1 from chlamydomonas Reinhardtii. Chem Phys. 2003;291:97–114.10.1016/S0301-0104(03)00187-3Search in Google Scholar

[17] Kutta RJ (2012). PhD Thesis, Universität Regensburg.Search in Google Scholar

[18] Megerle U, Wenninger M, Kutta RJ, Lechner R, Konig B, Dick B, et al. Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds. Phys Chem Chem Phys. 2011;13:8869–80.10.1039/c1cp20190eSearch in Google Scholar PubMed

[19] Meisel D, Neta P. One-electron reduction potential of riboflavine studied by pulse radiolysis. J Phys Chem. 1975;79:2459–61.10.1021/j100590a002Search in Google Scholar

[20] Amouyal E. Photochemical Production of hydrogen and oxygen from water – a review and state-of-the-art. Sol Energy Mater Sol Cells. 1995;38:249–76.10.1016/0927-0248(95)00003-8Search in Google Scholar

[21] Heelis PF. The photophysical and photochemical properties of flavins (isoalloxazines). Chem Soc Rev. 1982;11:15–39.10.1039/cs9821100015Search in Google Scholar

[22] (a) Miller A, Bruice TC. Oxidations by a 4a-hydroperoxyisoalloxazine hindered in the 9a and 10a positions. J Chem Soc., Chem Commun. 1979;896–7. (b) Eberlein G, Bruice TC. One and two electron reduction of oxygen by 1,5-dihydroflavins. J. Am. Chem. Soc. 1982;104:1449–52; (c) Bruice TC. Mechanisms of flavin catalysis. Acc. Chem. Res. 1980;13:256–62.10.1039/c39790000896Search in Google Scholar

[23] Massey V. The chemical and biological versatility of riboflavin. Biochem Soc Trans. 2000;28:283–96.10.1042/bst0280283Search in Google Scholar PubMed

[24] Rehm D, Weller A. Kinetik und mechanismus der elektronübertragung bei der fluoreszenzlöschung in acetonitril. Ber Bunsen-Ges Phys Chem. 1969;73:834–9.Search in Google Scholar

[25] Julliard M, Chanon M. Photoelectron-transfer catalysis: its connections with thermal and electrochemical analogs. Chem Rev (Washington, DC, U S.). 1983;83:425–506.10.1021/cr00056a003Search in Google Scholar

[26] (a) Ogston FJ, Green DE. The mechanism of the reaction of substrates with molecular oxygen. II. Biochem J. 1935;29:2005–12. (b) Ogston FJ, Green DE. The mechanism of the reaction of substrates with molecular oxygen. I Biochem J. 1935;29:1983–2004; (c) Kuhn R, Rudy H, Weygand F. Über die bildung eines künstlichen ferments aus 6.7-dimethyl-9-l-araboflavin-5′-phosphorsäure. Chem. Ber. 1936;69:2034–6; (d) Kuhn R, Rudy H. Lactoflavin als co-ferment; wirkstoff und träger. Chem. Ber. 1936;69:2557–67; (e) Green DE. α-Glycerophosphate dehydrogenase. Biochem. J. 1936;30:629–44; (f) Das BN. Studies on amino-acid dehydrogenase. II. activator of proline dehydrogenase. Biochem. J. 1936;30:1617–21; (g) Kuhn R, Ströbele R. Synthese von flavin-glucosiden. Chem. Ber. 1937;70:747–52; (h) Kuhn R, Vetter H, Rzeppa HW. Zur spezifität des lactoflavins; ersatz der methylgruppen durch den tetramethylen- und trimethylen-ring. Chem. Ber. 1937;70:1302–14; (i) Kuhn R, Ströbele R. Über o-Nitranilin-glucoside. Chem. Ber. 1937;70:773–87; (j) Dewan JG, Green DE. A new oxidation catalyst. Nature. 1937;140:1097–8; (k) Adler E, Euler HV. Lactoflavin in the eyes of fish. Nature. 193;141:790–1; (l) Dewan JG, Green DE. Coenzyme Factor – a new oxidation catalyst. Biochem. J. 1938;32:626–39; (m) Corran HS, Green DE, Straub FB. The catalytic function of heart flavoprotein. Biochem. J. 1939;33:793–801.10.1042/bj0292005Search in Google Scholar PubMed

[27] Lipmann F. Flavin component of the pyruvic acid oxidation system. Nature. 1939;143:436.10.1038/143436a0Search in Google Scholar

[28] Galston AW. Riboflavin-sensitized photooxidation of indoleacetic acid and related compounds. Proc Natl Acad Sci USA. 1949;35:10–7.10.1073/pnas.35.1.10Search in Google Scholar

[29] (a) Frisell WR, Chung CW, Mackenzie CG. Catalysis of oxidation of nitrogen compounds by flavin coenzymes in the presence of light. J Biol Chem. 1959;234:1297–302. (b) Enns K, Burgess WH. The photochemical oxidation of ethylenediaminetetraacetic acid and methionine by riboflavin. J. Am. Chem. Soc. 1965;87:5766–70; (c) McCormick DB, Koster JF, Veeger C. On the mechanisms of photochemical reductions of fad and fad-dependent flavoproteins. Eur. J. Biochem. 1967;2:387–91; (d) Byrom P, Turnbull JH. Excited states of flavine coenzymes-tv. kinetics of the photoreduction of lumiflavine by methionine. Photochem. Photobiol. 1968;8:243–54; (e) Penzer GR, Radda GK. The Chemistry of Flavines and Flavoproteins – Photoreduction Of Flavins By Amino Acids. Biochem. J. 1968;109:259–68.10.1016/S0021-9258(18)98176-7Search in Google Scholar PubMed

[30] (a) Suelter CH, Metzler DE. The oxidation of a reduced pyridine nucleotide analog by flavins. Biochim Biophys Acta. 1960;44:23–33. (b) Fox JL, Tollin G. Flavoenzyme models. i. flavin free-radical formation in the reduced nicotinamide-adenine dinucleotide-flavin mononucleotide system. Biochemistry. 1966;5:3865–72.10.1016/0006-3002(60)91518-3Search in Google Scholar

[31] (a) Radda GK, Calvin M. Chemical and photochemical reductions of flavin nucleotides and analogs. Biochemistry. 1964;3:384–93. (b) Penzer GR, Radda GK. The chemistry and biological function of isoalloxazines (flavines). Q. Rev. Chem. Soc. 1967;21:43; (c) Byrom P, Turnbull JH. Excited states of flavine coenzymes – ii. anaerobic oxidation of amino acids by excited riboflavine derivatives. Photochem. Photobiol. 6, 125–31.10.1021/bi00891a014Search in Google Scholar PubMed

[32] Yang SF, Ku HS, Pratt HK. Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide. J Biol Chem. 1967;242:5274–80.10.1016/S0021-9258(18)99422-6Search in Google Scholar PubMed

[33] (a) Hemmerich P, Massey V, Weber G. Photo-induced Benzyl Substitution of Flavins by Phenylacetate: a Possible Model for Flavoprotein Catalysis. Nature. 1967;213:728–30. (b) Walker WH, Hemmerich P, Massey V. Reductive photoalkylation of flavin nuclei and flavin-catalyzed photodecarboxylation of phenylacetate. Helv. Chim. Acta. 1967;50:2269–79.10.1038/213728a0Search in Google Scholar PubMed

[34] Walker WH, Hemmerich P, Massey V. Light-induced alkylation and dealkylation of the flavin nucleus. Stable Dihydroflavins: spectral Course and Mechanism of Formation. Eur J Biochem. 1970;13:258–66.10.1111/j.1432-1033.1970.tb00926.xSearch in Google Scholar PubMed

[35] Tishler M, Pfister K, Babson RD, Ladenburg K, Fleming AJ. The reaction between o-aminoazo compounds and barbituric acid. a new synthesis of riboflavin. J Am Chem Soc. 1947;69:1487–92.10.1021/ja01198a068Search in Google Scholar PubMed

[36] Bruestlein M, Hemmerich P. Photoreduction of flavocoenzymes by pyruvic acid. FEBS Lett. 1968;1:335–8.10.1016/0014-5793(68)80151-6Search in Google Scholar

[37] Hemmerich P, Nagelschneider G, Veeger C. Chemistry and molecular biology of flavins and flavoproteins. FEBS Lett. 1970;8:69–83.10.1016/0014-5793(70)80229-0Search in Google Scholar PubMed

[38] Weatherby GD, Carr DO. Riboflavine-catalyzed photooxidative decarboxylation of dihydrophthalates. Biochemistry. 1970;9:344–50.10.1021/bi00804a022Search in Google Scholar PubMed

[39] (a) Yoneda F, Mori K, Ono M, Kadokawa Y, Nagao E, Yamaguchi H. Syntheses of 2-deoxo-2-phenyl-5-deazaflavins and 3-phenyl-5-deazaflavins and their use in the oxidation of benzyl alcohol and benzylamine. Chem Pharm Bull. 1980;28:3514–20. (b) Nagamatsu T, Matsumoto E, Yoneda F. Autorecycling oxidation of alcohol catalyzed by pyrimidopteridines as a flavin model. Chem. Lett. 1982;1127–30.10.1248/cpb.28.3514Search in Google Scholar

[40] (a) Fukuzumi S, Tanii K, Tanaka T. Protonated pteridine and flavin analogues acting as efficient and substrate-selective photocatalysts in the oxidation of benzyl alcohol derivatives by oxygen. J Chem Soc., Chem Commun. 1989;816–18. (b) Fukuzumi S, Kuroda S, Tanaka T. Flavin analog-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light. J. Am. Chem. Soc. 1985;107:3020–7.10.1039/c39890000816Search in Google Scholar

[41] Tong W, Ye H, Zhu H, D’Souza VT. Photooxidation of substituted benzyl alcohol by riboflavin. J Mol Struct THEOCHEM. 1995;333:19–27.10.1016/0166-1280(94)03970-VSearch in Google Scholar

[42] Fukuzumi S, Kuroda S. Photooxidation of benzyl alcohol derivatives by oxygen, catalyzed by protonated flavin analogs. Res Chem Intermed. 1999;25:789–811.10.1163/156856799X00680Search in Google Scholar

[43] Fukuzumi S, Yasui K, Suenobu T, Ohkubo K, Fujitsuka M, Ito O. Efficient Catalysis of Rare-Earth Metal Ions in Photoinduced Electron-Transfer Oxidation of Benzyl Alcohols by a Flavin Analogue. J Phys Chem. 2001;105:10501–10.10.1021/jp012709dSearch in Google Scholar

[44] Muhldorf B, Wolf R. The enhanced reduction potential of riboflavin tetraacetate coordinating to scandium triflate enables the challenging photocatalytic C-H oxidation of electron-deficient alkylbenzenes and benzyl alcohols. Chem Commun. 2015;51:8425–8.Search in Google Scholar

[45] D’Souza VT. Modification of cyclodextrins for use as artificial enzymes. Supramol Chem. 2003;15:221–9.10.1080/1061027031000078220Search in Google Scholar

[46] Cibulka R, Vasold R, König B. Catalytic photooxidation of 4-methoxybenzyl alcohol with a flavin-zinc(II)-cyclen complex. Chem Eur J. 2004;10:6223–31.10.1002/chem.200400232Search in Google Scholar PubMed

[47] (a) Shinkai S, Nakao H, Ueda K, Manabe O. Light-mediated oxidation of alcohols and mandelate by flavin-metal complexes. Tetrahedron Lett. 1984;25:5295–8. (b) Shinkai S, Nakao H, Ueda K, Manabe O, Ohnishi M. Selective photooxidation of alkali mandelates by a flavin bearing a crown ring as a metal recognition site. Bull. Chem. Soc. Jpn. 1986;59:1632–4.10.1016/S0040-4039(01)81587-2Search in Google Scholar

[48] Schmaderer H, Bhuyan M, König B. Synthesis of rigidified flavin-guanidinium ion conjugates and investigation of their photocatalytic properties. Beilstein J Org Chem. 2009;5:26.10.3762/bjoc.5.26Search in Google Scholar PubMed PubMed Central

[49] Yasuda M, Nakai T, Kawahito Y, Shiragami T. Micelle-enhancing effect on a flavin-photosensitized reaction of benzyl alcohols in aqueous solution. Bull Chem Soc Jpn. 2003;76:601–5.10.1246/bcsj.76.601Search in Google Scholar

[50] Svoboda J, Schmaderer H, König B. Thiourea-enhanced flavin photooxidation of benzyl alcohol. Chem Eur J. 2008;14:1854–65.10.1002/chem.200701319Search in Google Scholar PubMed

[51] Schmaderer H, Hilgers P, Lechner R, König B. Photooxidation of benzyl alcohols with immobilized flavins. Adv Synth Catal. 2009;351:163–74.10.1002/adsc.200800576Search in Google Scholar

[52] Murakami M, Ohkubo K, Fukuzumi S. Inter- and intramolecular photoinduced electron transfer of flavin derivatives with extremely small reorganization energies. Chem Eur J. 2010;16:7820–32.10.1002/chem.200903236Search in Google Scholar PubMed

[53] Daďová J, Kümmel S, Feldmeier C, Cibulková J, Pažout R, Maixner J, et al. Aggregation effects in visible-light flavin photocatalysts: synthesis, structure, and catalytic activity of 10-arylflavins. Chem Eur J. 2013;19:1066–75.10.1002/chem.201202488Search in Google Scholar PubMed

[54] Korvinson KA, Hargenrader GN, Stevanovic J, Xie Y, Joseph J, Maslak V, et al. Improved flavin-based catalytic photooxidation of alcohols through intersystem crossing rate enhancement. J Phys Chem. 2016;120:7294–300.10.1021/acs.jpca.6b08405Search in Google Scholar PubMed

[55] Feldmeier C, Bartling H, Magerl K, Gschwind RM. LED-illuminated NMR studies of flavin-catalyzed photooxidations reveal solvent control of the electron-transfer mechanism. Angew Chem Int Ed. 2015;54:1347–51.10.1002/anie.201409146Search in Google Scholar PubMed

[56] Lechner R, König B. Oxidation and deprotection of primary benzylamines by visible light flavin photocatalysis. Synthesis (Mass). 2010;(2010:1712–8.10.1055/s-0029-1218709Search in Google Scholar

[57] Lechner R, Kümmel S, König B. Visible light flavin photo-oxidation of methylbenzenes, styrenes and phenylacetic acids. Photochem Photobiol Sci. 2010;9:1367–77.10.1039/c0pp00202jSearch in Google Scholar PubMed

[58] Mühldorf B, Wolf R. Visible-light-driven aerobic photooxidation of aldehydes to methyl esters catalyzed by riboflavin tetraacetate. ChemCatChem. 2017;9:920–3.10.1002/cctc.201601504Search in Google Scholar

[59] Mühldorf B, Wolf R. C-H photooxygenation of alkyl benzenes catalyzed by riboflavin tetraacetate and a non-heme iron catalyst. Angew Chem Int Ed. 2016;55:427–30.10.1002/anie.201507170Search in Google Scholar PubMed

[60] Hering T, Mühldorf B, Wolf R, König B. Halogenase-inspired oxidative chlorination using flavin photocatalysis. Angew Chem Int Ed. 2016;55:5342–5.10.1002/anie.201600783Search in Google Scholar PubMed PubMed Central

[61] (a) Kay CW, Bacher A, Fischer M, Richter G, Schleicher E, Weber S. Blue light-initiated DNA repair by photolyase. In: Silva E, Edwards AM, Eds. Flavins: photochemistry and Photobiology. Cambridge: The Royal Society of Chemistry, 2006:151–82. (b) Kim ST, Sancar A. Photochemistry, photophysics and mechanism of pyrimidine dimer repair by DNA photolyase. Photochem. Photobiol. 1993;57:895–904; (c) Carell T, Epple R. Repair of UV light induced DNA lesions: a comparative study with model compounds. Eur. J. Org. Chem. 1998;1245–58Search in Google Scholar

[62] (a) Metzler DE, Cairns WL. Photochemical degradation of flavines. VI. New photoproduct and its use in studying the photolytic mechanism. J Am Chem Soc. 1971;93:2772–7. (b) Kino K, Kobayashi T, Arima E, Komori R, Miyazawa H. Photoirradiation products of flavin derivatives, and the effects of photooxidation on guanine. Bioorg. Med. Chem. Lett. 2009;19:2070–4.10.1021/ja00740a031Search in Google Scholar PubMed

[63] Song P-S, Sun M, Koziolowa A, Koziol J. Phototautomerism of lumichromes and alloxazines. J Am Chem Soc. 1974;96:4319–23.10.1021/ja00820a045Search in Google Scholar

[64] (a) Kozioł J. Studies on Flavins in Organic Solvents – III. Spectral Behaviour of Lumifalvin. Photochem Photobiol. 1969;9:45–53. (b) Moyon NS, Mitra S. Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study. J. Phys. Chem. A. 2011;115:2456–64.10.1111/j.1751-1097.1969.tb05908.xSearch in Google Scholar PubMed

[65] Porcal G, Bertolotti SG, Previtali CM, Encinas MV. Electron transfer quenching of singlet and triplet excited states of flavins and lumichrome by aromatic and aliphatic electron donors. Phys Chem Chem Phys. 2003;5:4123.10.1039/b306945aSearch in Google Scholar

[66] (a) Gelalcha FG. Heterocyclic hydroperoxides in selective oxidations. Chem Rev. 2007;107:3338–61. (b) Imada Y, Naota T. Flavins as organocatalysts for environmentally benign molecular transformations. Chem. Rec. 2007;7:354–61; (c) Murahashi S, Oda T, Masui Y. Flavin-catalyzed oxidation of amines and sulfur compounds with hydrogen peroxide. J. Am. Chem. Soc. 1989;111:5002–3; (d) Jurok R, Cibulka R, Dvořáková H, Hampl F, Hodačová J. Planar chiral flavinium salts – prospective catalysts for enantioselective sulfoxidation reactions. Eur. J. Org. Chem. 2010:5217–24; (e) Murahashi SI, Ono S, Imada Y. Asymmetric baeyer-villiger reaction with hydrogen peroxide catalyzed by a novel planar-chiral bisflavin. Angew. Chem. Int. Ed. 2002;41:2366–8; (f) Baxová L, Cibulka R, Hampl F. Organocatalytic sulfoxidation in micellar systems containing amphiphilic flavinium salts using hydrogen peroxide as a terminal oxidant. J. Mol. Catal. A: Chem. 2007;277:53–60.10.1021/cr0505223Search in Google Scholar PubMed

[67] (a) Kim JM, Bogdan MA, Mariano PS. Mechanistic analysis of the 3-methyllumiflavin-promoted oxidative deamination of benzylamine. A potential model for monoamine oxidase catalysis. J Am Chem Soc. 1993;115:10591–5. (b) Ménová P, Eigner V, Čejka J, Dvořáková H, Šanda M, Cibulka R. Synthesis and structural studies of flavin and alloxazine adducts with O-nucleophiles. J. Mol. Struct. 2011;1004:178–87.10.1021/ja00076a017Search in Google Scholar

[68] Sikorska E, Khmelinskii IV, Prukała W, Williams SL, Patel M, Worrall DR, et al. Spectroscopy and photophysics of lumiflavins and lumichromes. J Phys Chem. 2004;108:1501–8.10.1021/jp037048uSearch in Google Scholar

[69] Lei B, Ding Q, Tu SC. Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5′-phosphate as a model. Biochemistry. 2004;43:15975–82.10.1021/bi0480640Search in Google Scholar PubMed

[70] Insińska-Rak M, Sikorska E, Bourdelande JL, Khmelinskii IV, Prukała W, Dobek K, et al. Spectroscopy and photophysics of flavin-related compounds: 5-deaza-riboflavin. J Mol Struct. 2006;783:184–90.10.1016/j.molstruc.2005.09.005Search in Google Scholar

[71] (a) Sichula V, Kucheryavy P, Khatmullin R, Hu Y, Mirzakulova E, Vyas S, et al. Electronic properties of N(5)-ethyl flavinium ion. J Phys Chem. 2010;114:12138–47. (b) Imada Y, Iida H, Ono S, Masui Y, Murahashi S. Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: biomimetic green oxidation. Chem. Asian J. 2006;1:136–47.10.1021/jp106288sSearch in Google Scholar PubMed

[72] Walker AG, Radda GK. Photoreactions of retinol and derivatives sensitized by flavins. Nature. 1967;215:1483.10.1038/2151483a0Search in Google Scholar PubMed

[73] (a) Metternich JB, Gilmour R. A Bio-Inspired, Catalytic E → Z Isomerization of Activated Olefins. J Am Chem Soc. 2015;137:11254–57. (b) Metternich JB, Artiukhin DG, Holland MC, von Bremen-Kühne M, Neugebauer J, Gilmour R. Photocatalytic E → Z isomerization of polarized alkenes inspired by the visual cycle: mechanistic dichotomy and origin of selectivity. J. Org. Chem. 2017;82:9955–77; (c) Metternich JB, Gilmour R. One photocatalyst, n activation modes strategy for cascade catalysis: emulating coumarin biosynthesis with (−)-riboflavin. J. Am. Chem. Soc. 2016;138:1040–5.10.1021/jacs.5b07136Search in Google Scholar PubMed

[74] (a) Mojr V, Svobodova E, Strakova K, Nevesely T, Chudoba J, Dvorakova H, et al. Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chem Commun. 2015;51:12036–9. (b) Jirásek M, Straková K, Neveselý T, Svobodová E, Rottnerová Z, Cibulka R. Flavin-mediated visible light [2+2] photocycloadditon of nitrogen and sulfur-containing dienes. Eur. J. Org. Chem. 2017:2139–46.; (c) Mojr V, Pitrová G, Straková K, Prukała D, Brazevic S, Svobodová E, Hoskovcová I, Burdziński G, Slanina T, Sikorski M, Cibulka R. Flavin photocatalysts for visible-light [2+2] cycloadditions: structure, reactivity and reaction mechanism. ChemCatChem. 2018;10:849–58.10.1039/C5CC01344ESearch in Google Scholar

[75] Špačková J, Svobodová E, Hartman T, Stibor I, Kopecká J, Cibulková J, et al. Visible Light [2+2] Photocycloaddition Mediated by Flavin Derivative Immobilized on Mesoporous Silica. ChemCatChem. 2017;9:1177–81.10.1002/cctc.201601654Search in Google Scholar

[76] Hartman T, Cibulka R. Photocatalytic Systems with Flavinium Salts: from Photolyase Models to Synthetic Tool for Cyclobutane Ring Opening. Org Lett. 2016;18:3710–3.10.1021/acs.orglett.6b01743Search in Google Scholar PubMed

[77] Sikorska E, Sikorski M, Steer RP, Wilkinson F, Worrall DR Efficiency of singlet oxygen generation by alloxazines and isoalloxazines. J Chem Soc., Faraday Trans. 1998;94:2347–53.10.1039/a802340iSearch in Google Scholar

[78] (a) Dad’ová J, Svobodová E, Sikorski M, König B, Cibulka R. Photooxidation of Sulfides to Sulfoxides Mediated by Tetra-O-Acetylriboflavin and Visible Light. ChemCatChem. 2012;4:620–3. (b) Neveselý T, Svobodová E, Chudoba J, Sikorski M, Cibulka R. Efficient Metal-Free Aerobic Photooxidation of Sulfides to Sulfoxides Mediated by a Vitamin B2 Derivative and Visible Light. Adv. Synth. Catal. 2016;358:1654–63.10.1002/cctc.201100372Search in Google Scholar

[79] Insińska-Rak M, Sikorska E, Bourdelande JL, Khmelinskii IV, Prukała W, Dobek K, et al. New Photochemically Stable Riboflavin analogue-3-Methyl-Riboflavin Tetraacetate. J. Photochem. Photobiol., A. 2007;186:14–23.Search in Google Scholar

[80] Sikorska E, Khmelinskii I, Komasa A, Koput J, Ferreira LF, Herance JR, et al. Spectroscopy and photophysics of flavin related compounds: riboflavin and iso-(6,7)-riboflavin. Chem Phys. 2005;314:239–47.10.1016/j.chemphys.2005.03.005Search in Google Scholar

[81] Sikorski M, Sikorska E, Koziolowa A, Gonzalez Moreno R, Bourdelande JL, Steer RP, et al. Photophysical properties of lumichromes in water. J Photochem Photobiol., B. 2001;0:114–9.10.1016/S1011-1344(01)00134-8Search in Google Scholar

[82] Sahbaz F, Somer G. Photosensitized decomposition of ascorbic acid in the presence of riboflavin. Food Chem. 1993;46:177–82.10.1016/0308-8146(93)90033-CSearch in Google Scholar

[83] Kanner JD, Fennema O. Photooxidation of tryptophan in the presence of riboflavin. J Agric Food Chem. 1987;35:71–6.10.1021/jf00073a017Search in Google Scholar

[84] Yoshimura A, Ohno T. Lumiflavin-Sensitized Photooxygenation of Indole. Photochem Photobiol. 1988;48:561–5.10.1111/j.1751-1097.1988.tb02864.xSearch in Google Scholar PubMed

[85] Silva E, Edwards AM, Pacheco D. Visible light-induced photooxidation of glucose sensitized by riboflavin. J Nutr Biochem. 1999;10:181–5.10.1016/S0955-2863(98)00093-XSearch in Google Scholar PubMed

[86] King JM, Min DB. Riboflavin Photosensitized Singlet Oxygen Oxidation of Vitamin D. J Food Sci. 1998;63:31–4.10.1111/j.1365-2621.1998.tb15669.xSearch in Google Scholar

[87] (a) Fukuzumi S, Tanii K, Tanaka T. Flavin-sensitized photo-oxidation of unsaturated fatty acids. J Chem Soc., Perkin Trans. 1989;2:2103. (b) Chacon JN, McLearie J, Sinclair RS. Singlet oxygen yields and radical contributions in the dye-sensitized photooxidation in methanol of esters of polyunsaturated fatty acids (oleic, linoleic, linolenic and arachidonic). Photochem. Photobiol. 1988;47:647–56; (c) Huvaere K, Cardoso DR, Homemde-Mello P, Westermann S, Skibsted LH. Light-induced oxidation of unsaturated lipids as sensitized by flavins. J. Phys. Chem. B. 2010;114:5583–93.10.1039/p29890002103Search in Google Scholar

Published Online: 2018-06-15

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2017-0168/html
Scroll to top button