Luminescence of uranium(VI) after liquid-liquid extraction from HCl by Aliquat® 336 in n-dodecane:1-decanol by time-resolved laser-induced luminescence spectroscopy

Pascal E. Reiller 1  and Clarisse Mariet 2
  • 1 Commissariat a l’Energie Atomique et aux Energies Alternatives Saclay, DEN/DANS/SEARS/LANIE, Bat 391 PC 33, F-91191,, Gif-sur-Yvette CEDEX, France
  • 2 Commissariat a l’Energie Atomique et aux Energies Alternatives Saclay, DEN/DANS/DPC/SEARS/LANIE, Bat 391 PC 33, F-91191, Gif-sur-Yvette CEDEX, France
Pascal E. Reiller
  • Corresponding author
  • Commissariat a l’Energie Atomique et aux Energies Alternatives Saclay, DEN/DANS/SEARS/LANIE, Bat 391 PC 33, F-91191,, Gif-sur-Yvette CEDEX, France
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Clarisse Mariet
  • Commissariat a l’Energie Atomique et aux Energies Alternatives Saclay, DEN/DANS/DPC/SEARS/LANIE, Bat 391 PC 33, F-91191, Gif-sur-Yvette CEDEX, France
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

To investigate the extraction of uranium(VI) in HCl media by Aliquat® 336 in 1:99 (v:v) 1-decanol:n-dodecane mixture, our objective is to identify the complexe(s) in the organic phase by time-resolved laser-induced luminescence spectroscopy (TRLS). The extraction mechanism is supposed to involve the formation of [UO2Cl42(R4N+)2] in the organic phase. The occurrence of such a species leads to the presence of the UO2Cl42 species in the organic solution, which luminescence shows particular features. The luminescence spectra and decay time evolutions are obtained in the organic phase as a function of HCl concentration in the aqueous phase (0.5–6 M). The extraction of UO2Cl42 is confirmed by the particular spectrum of uranium(VI) in the organic phase, and the typical splitting of the luminescence bands, due to the crystal field effect, is clearly evidenced. The stoichiometry is verified using luminescence intensity variation as a function of the activity of Cl, and extraction constants are calculated both using the specific interaction theory and Pitzer model. A decomposition of the spectrum of the extracted complex in the organic phase is also proposed. The decay time variation as a function of temperature allows estimating the activation energy of the luminescence process of the extracted complex.

  • 1.

    Sato, T.: Extraction of uranium(VI) from hydrochloric acid solutions by long-chain alkyl quaternary ammonium chloride. J. Inorg. Nucl. Chem. 34, 3835 (1972).

    • Crossref
    • Export Citation
  • 2.

    Jünger, E., Schmid, E. R.: Die Uran(IV)-extraktion aus wäßrig-organischen Salpetersäurelösungen mit Trioctylmethylammoniumnitrat (Aliquat-336). Monatsh. Chem. 105, 148 (1974).

    • Crossref
    • Export Citation
  • 3.

    Bhandiwad, V. R., Swarup, R., Patil, S. K.: Extraction of actinides by quaternary amines from hydrochloric acid medium. J. Radioanal. Chem. 52, 5 (1979).

    • Crossref
    • Export Citation
  • 4.

    Quinn, J. E., Ogden, M. D., Soldenhoff, K.: Solvent extraction of uranium (VI) from chloride solutions using Cyphos IL-101. Solvent Extr. Ion Exch. 31, 538 (2013).

    • Crossref
    • Export Citation
  • 5.

    Mishra, S., Mohanty, S., Chakravortty, V.: Liquid-liquid extraction of uranium(VI) by the mixtures of Aliquat 336 and Alamine 304/PC88A from aq. HCl media. Radiochim. Acta 69, 195 (1995).

  • 6.

    Hellé, G., Mariet, C., Cote, G.: Liquid-liquid microflow patterns and mass transfer of radionuclides in the systems Eu(III)/HNO3/DMDBTDMA and U(VI)/HCl/Aliquat® 336. Microfluid. Nanofluid. 17, 1113 (2014).

    • Crossref
    • Export Citation
  • 7.

    Hellé, G., Mariet, C., Cote, G.: Liquid-liquid extraction of uranium(VI) with Aliquat® 336 from HCl media in microfluidic devices: combination of micro-unit operations and online ICP-MS determination. Talanta 139, 123 (2015).

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., Reich, T.: Investigation of aquo and chloro complexes of UO2 2+, NpO2 +, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg. Chem. 36, 4676 (1997).

    • Crossref
    • Export Citation
  • 9.

    Moon, E. M., Ogden, M. D., Griffith, C. S., Wilson, A., Mata, J. P.: Impact of chloride on uranium(VI) speciation in acidic sulfate ion exchange systems: towards seawater-tolerant mineral processing circuits. J. Ind. Eng. Chem. 51, 255 (2017).

    • Crossref
    • Export Citation
  • 10.

    Görller-Walrand, C., De Houwer, S., Fluyt, L., Binnemans, K.: Spectroscopic properties of uranyl chloride complexes in non-aqueous solvents. Phys. Chem. Chem. Phys. 6, 3292 (2004).

    • Crossref
    • Export Citation
  • 11.

    Grenthe, I., Fuger, L., Konings, R. G. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics 1. Chemical Thermodynamics of Uranium. North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands (1992), p. 715.

  • 12.

    Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M.: Chemical Thermodynamics 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands (2003), p. 918.

  • 13.

    Grenthe, I., Puigdomènech, I.: Modelling in Aquatic Chemistry. Nuclear Energy Agency, OECD, Paris (1997), p. 724.

  • 14.

    Pitzer, K. S.: Ion interaction approach: theory and data correlation. In: K. S. Pitzer (Ed.), Activity Coefficients in Electrolyte Solution, 2nd Ed., CRC Press, Boca Raton, FL, USA (1991), p. 75.

  • 15.

    Grenthe, I., Plyasunov, A. V., Spahiu, K.: Chapter IX. Estimations of medium effects on thermodynamic data. In: I. Grenthe, I. Puigdomènech (Eds.), Modelling in Aquatic Chemistry, OECD, Paris (1997), p. 325.

  • 16.

    Soderholm, L., Skanthakumar, S., Wilson, R. E.: Structural correspondence between uranyl chloride complexes in solution and their stability constants. J. Phys. Chem. A 115, 4959 (2011).

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Nockemann, P., Servaes, K., Van Deun, R., Van Hecke, K., Van Meervelt, L., Binnemans, K., Görller-Walrand, C.: Speciation of uranyl complexes in ionic liquids by optical spectroscopy. Inorg. Chem. 46, 11335 (2007).

    • Crossref
    • PubMed
    • Export Citation
  • 18.

    Sornein, M. O., Cannes, C., Le Naour, C., Lagarde, G., Simoni, E., Berthet, J. C.: Uranyl complexation by chloride ions. Formation of a tetrachlorouranium(VI) complex in room temperature ionic liquids [Bmim][Tf2N] and [MeBu3N][Tf2N]. Inorg. Chem. 45, 10419 (2006).

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    Ryan, J. L.: Anion exchange and non-aqueous studies of anionic chloro complexes of hexavalent actinides. Inorg. Chem. 2, 348 (1963).

    • Crossref
    • Export Citation
  • 20.

    Sato, T., Nakamura, T., Fujimatsu, T.: Diluent effect on the extraction of uranium(VI) from hydrochloric acid solutions by trioctylmethylammonium chloride. Solvent Extr. Ion Exch. 1, 709 (1983).

    • Crossref
    • Export Citation
  • 21.

    Sato, T., Nakamura, T., Kuwahara, M.: Diluent effect on the extraction of uranium(VI) from hydrochloric-acid solutions by trioctylamine. Solvent Extr. Ion Exch. 3, 283 (1985).

    • Crossref
    • Export Citation
  • 22.

    Moulin, C., Reiller, P., Beaucaire, C., Lemordant, D.: Time-resolved laser-induced spectrofluorometry studies of uranium/sodium dodecyl sulfate interactions. Appl. Spectrosc. 47, 2172 (1993).

    • Crossref
    • Export Citation
  • 23.

    Moulin, C., Reiller, P., Beaucaire, C., Lemordant, D.: Time-resolved laser-induced spectrofluorometry for the study of uranium anionic surfactant micelle interactions. J. Colloid Interface Sci. 157, 411 (1993).

    • Crossref
    • Export Citation
  • 24.

    Fromentin, E., Reiller, P. E.: Influence of adipic acid on the speciation of Eu(III): review of thermodynamic data in NaCl and NaClO4 media, and a new determination of Eu-adipate complexation constant in 0.5 mol.kgw −1 NaClO4 medium by time-resolved luminescence spectroscopy. Inorg. Chim. Acta 482, 588 (2018).

    • Crossref
    • Export Citation
  • 25.

    Kouhail, Y. Z., Benedetti, M. F., Reiller, P. E.: Eu(III)-fulvic acid complexation: evidence of fulvic acid concentration dependent interactions by time-resolved luminescence spectroscopy. Environ. Sci. Technol. 50, 3706 (2016).

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    de Levie, R.: Advanced Excel for Scientific Data Analysis. Oxford University Press (2004), p. 638.

  • 27.

    Moriyasu, M., Yokoyama, Y., Ikeda, S.: Quenching of uranyl luminescence by water molecule. J. Inorg. Nucl. Chem. 39, 2211 (1977).

    • Crossref
    • Export Citation
  • 28.

    Moriyasu, M., Yokoyama, Y., Ikeda, S.: Anion coordination to uranyl-ion and luminescence lifetime of uranyl complex. J. Inorg. Nucl. Chem. 39, 2199 (1977).

    • Crossref
    • Export Citation
  • 29.

    Novotny, P., Sohnel, O.: Densities of binary aqueous solutions of 306 inorganic substances. J. Chem. Eng. Data 33, 49 (1988).

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Radiochimica Acta publishes original papers, review articles, and “rapid communications” (short articles of a more timely interest) on all chemical aspects of nuclear science and technology. The journal is geared toward scientists who are actively engaged in research work.

Search