Volume oxidation of uranium mononitride and uranium monocarbide in the dry NOX-gaseous atmosphere

Sergey A. Kulyukhin 1 , Yuri M. Nevolin 1 , 2 , Vladimir G. Petrov 2 ,  and Stepan N. Kalmykov 2
  • 1 A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31/4, Leninsky pr., Moscow 119071, Russia
  • 2 Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1 bld.3, Moscow 119991, Russia
Sergey A. Kulyukhin
  • A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31/4, Leninsky pr., Moscow 119071, Russia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Yuri M. Nevolin
  • Corresponding author
  • A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31/4, Leninsky pr., Moscow 119071, Russia
  • Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1 bld.3, Moscow 119991, Russia
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Vladimir G. Petrov
  • Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1 bld.3, Moscow 119991, Russia
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Stepan N. Kalmykov
  • Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1 bld.3, Moscow 119991, Russia
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Gaseous volume oxidation (voloxidation) of uranium mononitride (UN) and uranium monocarbide (UC) was investigated in the “NOx-air” atmosphere in the temperature range 298–673 K. It was shown that UN can be converted into uranium water-soluble compounds using an alternative oxidation atmosphere based on NOX-gases. UO3 and uranyl nitrates are the main products of the reaction. Maximum degree of the UN conversion to water-soluble compounds equal to 80 % was observed at the temperature 565 K. Products of the UC conversion are uranium oxides and oxihydroxides. The observed degree of the UC conversion into water-soluble compounds was less then 20 %.

  • 1.

    Johnson, J. A.: Studies of Reaction Process for Voloxidation Methods. PhD diss. The University of Tennessee, Knoxville, USA (2013).

  • 2.

    Volk, V. I., Veselov, S. N., Dvoeglazov, K. N., Arseenkov, L. V., Gavrilov, P. M., Smirnov, S. I., Alekseenko, V. N.: New technology and hardware for reprocessing spent nuclear fuel from thermal reactors. Atom. Energy 119, 339 (2016).

    • Crossref
    • Export Citation
  • 3.

    Metalidi, M. M., Shapovalov, S. V., Ismailov, R. V., Skriplev, M. I., Beznosyuk, V. I., Fedorov, Y. S.: Thermochemical embrittlement of the zirconium cladding of a fuel rod and oxidative recrystallization of the fuel material in the course of spent nuclear fuel reprocessing. Radiochemistry 57, 98 (2015).

    • Crossref
    • Export Citation
  • 4.

    Collins, E. D., Delcul, G. D., Hunt, R. D., Johnson, J. A., Spencer, B. B.: Advanced dry head-end reprocessing of light water reactor spent nuclear fuel. Patent US 8574523.2013 (2013).

  • 5.

    Goode, J. H.: Voloxidation – Removal of Volatile Fission Products from Spent LMFBR Fuels, ORNL-TM-3723 report (1973).

  • 6.

    Song, K. C., Park, G. Il, Lee, J. W., Park, J. J., Yang, M. S.: Fractional release behavior of volatile and semivolatile fission products during a voloxidation and OREOX treatment of spent PWR fuel. Nucl. Technol. 162, 158 (2008).

    • Crossref
    • Export Citation
  • 7.

    Dvoeglazov, K. N., Shadrin, A. Y., Shudegova, O. V., Pavlyukevich, E.Y., Bogdanov, A. I., Zverev, D. V.: Okislenie model’nogo uran-plutonievogo nitridnogo topliva i vliyanie ehtogo processa na rastvorenie v azotnoj kislote. VANT 87, 81 (2016).

  • 8.

    Kotel’nikov, R. B., Bashlykov, S. N., Kashtanov, A. I., Men’shikova, T. S.: Vysokotemperaturnoe Yadernoe Toplivo. Atomizdat, Moscow (1978)

  • 9.

    Antill, J. E., Myatt, B. L.: Kinetics of the oxidation of UN and U(CO) in carbon dioxide, steam and water at elevated temperatures. Corros. Sci. 6, 17 (1966).

    • Crossref
    • Export Citation
  • 10.

    Dell, M., Wheeler, V. J.: The ignition of uranium mononitride and uranium monocarbide in oxygen. J. Nucl. Mater. 21, 328 (1966).

  • 11.

    Dell, R. M., Wheeler, V. J., McIver, E. J.: The oxidation of uranium mononitride and uranium monocarbide. Trans. Faraday Soc. 62, 3591 (1966).

    • Crossref
    • Export Citation
  • 12.

    Dell, R. M., Wheeler, V. J., Bridger, N. J.: Hydrolysis of uranium mononitride. Trans. Faraday Soc. 63, 1286 (1967).

    • Crossref
    • Export Citation
  • 13.

    Allbutt, M., Dell, R.: Chemical aspects of nitride, phosphide and sulphide fuels. J. Nucl. Mater. 24, 1 (1967).

    • Crossref
    • Export Citation
  • 14.

    Ohmichi, T., Honda, T.: The oxidation of UC and UN powder in air. J. Nucl. Sci. Technol. 5, 600 (1968).

    • Crossref
    • Export Citation
  • 15.

    Sole, M. J., Van der Walt, C. M.: Oxidation and deformation studies of uranium nitride by electron microscopy. Acta Metall. 16, 501 (1968).

    • Crossref
    • Export Citation
  • 16.

    Ferris, L. M.: Reactions of uranium mononitride, thorium monocarbide and uranium monocarbide with nitric acid and other aqueous reagents. J. Inorg. Nucl. Chem. 30, 2661 (1968).

    • Crossref
    • Export Citation
  • 17.

    Sugihara, S., Imoto, S.: Hydrolysis of uranium nitrides. J. Nucl. Sci. Technol. 6, 237 (1969).

    • Crossref
    • Export Citation
  • 18.

    Paljevic, M., Despotovic, Z.: Oxidation of uranium mononitride. J. Nucl. Mater. 57, 253 (1975).

    • Crossref
    • Export Citation
  • 19.

    Rama Rao, G. A., Mukerjee, S. K., Vaidya, V. N., Venugopal, V., Sood, D. D.: Oxidation and hydrolysis kinetic studies on UN. J. Nucl. Mater. 185, 231 (1991).

    • Crossref
    • Export Citation
  • 20.

    Dehadraya, J. V., Mukerjee, S. K., Rama Rao, G. A., Vaidya, V. N., Venugopal, V., Sood, D. D.: The oxidation of uranium-cerium mononitride microspheres. J. Alloys Compd. 257, 313 (1997).

    • Crossref
    • Export Citation
  • 21.

    Rama Rao, G. A., Jayanthi, K., Mukerjee, S. K., Vaidya, V. N., Venugopal, V.: Oxidation behaviour of U2N3. Thermochim. Acta. 159, 349 (1990).

    • Crossref
    • Export Citation
  • 22.

    Sunder, S., Miller, N. H.: XPS and XRD studies of corrosion of uranium nitride by water. J. Alloys Compd. 271, 568 (1998).

  • 23.

    Liu, K., Luo, L., Long, Z., Hong, Z., Yang, H., Wu, S.: Initial oxidation behaviors of nitride surfaces of uranium by XPS analysis. Appl. Surf. Sci. 280, 268 (2013).

    • Crossref
    • Export Citation
  • 24.

    Lu, L., Li, F., Hu, Y., Xiao, H. Bai, B., Zhang, Y., Luo, L., Liu, J., Liu, K.: The initial oxidation behaviors of uranium nitride UNx (x=0, 0.23, 0.68, 1.66) films. J. Nucl. Mater. 480, 189 (2016).

    • Crossref
    • Export Citation
  • 25.

    Johnson, K., Strom, V., Wallenius, J., Lopes, D. A.: Oxidation of accident tolerant fuel candidates. J. Nucl. Sci. Technol. 54, 280 (2017).

  • 26.

    Luo, L., Hu, Y., Pan, Q., Long, Z., Lu, L., Liu, K., Wang, X.: Extended study on oxidation behaviors of UN0.68 and UN1.66 by XPS. J. Nucl. Mater. 371, 501 (2018).

  • 27.

    Ustinov, O. A., Kulyukhin, S. A., Shadrin, A. Y., Voskresenskaya, Y. A.: Nitrogen hemioxide: properties and neutralization methods. Atom. Energy 120, 138 (2016).

    • Crossref
    • Export Citation
  • 28.

    Kulyukhin, S. A., Shadrin, A. Y., Voskresenskaya, Y. A., Bessonov, A. A., Ustinov O.: A study of nitrogen oxides released into the gas phase during uranium nitride dissolution in nitric acid. J. Radioanal. Nucl. Chem. 304, 425 (2015).

    • Crossref
    • Export Citation
  • 29.

    Zverev, D. V., Kirillov, S. N., Dvoeglazov, K. N., Shadrin, A. Y., Logunov, M. V., Mashkin, A. N., Schmidt, O. V., Arseenkov, L. V.: Possible options for uranium-carbide SNF processing. Procedia Chem. 7, 116 (2012).

    • Crossref
    • Export Citation
  • 30.

    Natarajan, R.: Reprocessing of FBTR mixed carbide fuel- some process chemistry aspects. In: 16th Ann. Conf. Ind. Nucl. Soc. INSAC-2005. Mumbai (2005).

  • 31.

    Kudinov, A. S., Goleckij, N. D., Zil’berman, B. Y., Fedorov, Y. S., Rodionov, S. A., Petrov, Y. Y., Murzin, A. A., Naumov, A. A., Kormilicyn, M. V., Poglyad S. S., Chistyakov, V. M.: Podhody k pererabotke karbidnogo oyat na primere oyat amb. In: 7-ya Ross. Konf. po radiohimii ‘Radiohimiya-2012’. Dimitrovgrad (2012).

  • 32.

    Kudinov, A. S., Goleckij, N. D., Zil’berman, B. Y., et al.: Novye podhody k pererabotke karbidnogo topliva In: VIII Vseross. Konf. po radiohimii ‘Radiohimiya-2015’. ZHeleznogorsk (2015).

  • 33.

    Kudinov, A. S., Goleckij, N. D., Zil’berman, B. Y.: Sposob podgotovki karbidnogo OYAT k ehkstrakcionnoj pererabotke (varianty). Patent RU 2529185 (2014).

  • 34.

    Kulyukhin, S. A., Nevolin, Y. M., Mizina, L. V., Konovalova, N. A., Gordeev, A. V.: Gas-phase conversion of the U, Sr, Mo, and Zr oxides into water-soluble compounds in the NOx–H2O (vapor)–air atmosphere. Radiochemistry 58, 13 (2016).

    • Crossref
    • Export Citation
  • 35.

    Kulyukhin, S. A., Nevolin, Y. M., Gordeev, A. V.: Gas-phase conversion of U, Sr, and Mo compounds into water-soluble forms in a nitrating atmosphere. Radiochemistry 59, 247 (2017).

    • Crossref
    • Export Citation
  • 36.

    JCPDS – Int. Centre for Diffraction Data. PDF 03-065-5985, UN.

  • 37.

    JCPDS – Int. Centre for Diffraction Data. PDF 03-065-0285, UO2.

  • 38.

    JCPDS – Int. Centre for Diffraction Data. PDF 00-018-1429, ε-UO3.

  • 39.

    JCPDS – Int. Centre for Diffraction Data. PDF 00-027-0937, UO2(NO3)2·3H2O.

  • 40.

    Johnson, J. A., Rawn, C. J., Spencer, B. B., Meisner, R. A., Del Cul, G. D.: Oxidation kinetics for conversion of U3O8 to ε-UO3 with NO2. J. Nucl. Mater. 490, 211 (2017).

    • Crossref
    • Export Citation
  • 41.

    Hoekstra, H. R., Siegel, S.: The uranium-oxygen system: U3O8-UO3. J. Inorg. Nucl. Chem. 18, 154 (1961).

    • Crossref
    • Export Citation
  • 42.

    Kobec, L. V., Klavsut’, G. N., Umrejko, D. S.: Fiziko-himicheskoe issledovanie bezvodnogo uranilnitrata i trinitratouranilata nitrozoniya. Zh. Neorg. Khim. 173, 26 (1981).

  • 43.

    JCPDS – Int. Centre for Diffraction Data. PDF 00-010-0309, UO3·0.8H2O.

  • 44.

    JCPDS – Int. Centre for Diffraction Data. PDF 01-074-2101, α-U3O8.

  • 45.

    Ondrejcin, R. S., Garrett, T. P.: The thermal decomposition of anhydrous uranyl nitrate and uranyl nitrate dihydrate 1. J. Phys. Chem. 65, 470 (1961).

    • Crossref
    • Export Citation
  • 46.

    Kac, D., Rabinovich, E.: Himiya urana. IL, Moscow (1954), p. 1.

  • 47.

    Lister, A. J., Richardson, R. J.: The preparation of uranium trioxide by thermal decomposition of uranyl nitrate. AERE C/R 1874 (1954).

  • 48.

    Galkin, N. P., Sudarikov, B. N., Veryatin, U. D., Shishkov, Y. D., Majorov, A. A.: Tekhnologiya urana. Atomizdat, Moscow (1964), p. 1.

  • 49.

    Schaal, G., Faron, R.: Process for obtaining uranium trioxide by thermal denitration of uranyl nitrate, Patent US 5,628,048 (1997).

  • 50.

    Seleev, I. N., Aksutin, A. N., Jabin, A. Y.: Termohimicheskaya obrabotka fragmentirovannogo OYaT okislitel’noj sistemoj na osnove dioksida azota In IX Russian Conference on Radiochemistry “Radiochemistry 2018”. 326, Sankt-Petersburg (2018).

  • 51.

    JCPDS – Int. Centre for Diffraction Data. PDF 01-073-1709, UC.

  • 52.

    JCPDS – Int. Centre for Diffraction Data. PDF 01-084-1344, UC2.

  • 53.

    JCPDS – Int. Centre for Diffraction Data. PDF 01-073-1714, UO.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Radiochimica Acta publishes original papers, review articles, and “rapid communications” (short articles of a more timely interest) on all chemical aspects of nuclear science and technology. The journal is geared toward scientists who are actively engaged in research work.

Search