68Ga CdTe/CdS fluorescent quantum dots for detection of tumors: investigation on the effect of nanoparticle size on stability and in vivo pharmacokinetics

Yousef Fazaeli 1 , Hakimeh Zare 2 , Shokufeh Karimi 1 ,  and Shahzad Feizi 1
  • 1 Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran
  • 2 Department of Physics, Yazd University, Yazd, Iran
Yousef Fazaeli
  • Corresponding author
  • Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Hakimeh Zare, Shokufeh Karimi
  • Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Shahzad Feizi
  • Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Background

Quantum dots (QDs)-based theranostics offer exciting new approaches to diagnose and therapy of cancer. To take advantage of the unique properties of these fluorescent QDs for different biomedical applications, their structures, size and/or surface chemistry need to be optimized, allowing their stability and functionalities to be tailored for different biomedical applications.

Methodology

Cadmium telluride/Cadmium sulfide QDs (CdTe/CdS QDs) were synthesized and their structure, size, photostability and functionalities as a bioprobe for detection of Fibrosarcoma tumors were studied and compared with Cadmium telluride (CdTe) QDs. Hence, CdTe/CdS QDs were labeled with 68Ga radionuclide for fast in vivo biological nuclear imaging. Using gamma paper chromatography (γ-PC), the physicochemical properties of the prepared labeled QDs were assessed. In vivo biodistribution and positron emission tomography (PET) imaging of the 68Ga@ CdTe/CdS QDs nanocrystals were investigated in Sprague Dawley® rats bearing Fibrosarcoma tumor.

Results

CdS shell on the surface of CdTe core increases the size and photostability against high energy radiations; therefore, CdTe/CdS QDs show prolonged fluorescence as compared to CdTe QDs.

Conclusion

Excellent accumulation in tumor was observed for core/shell quantum dots, but this study showed that small changes in the size of the QDs (+1 nm), after adding the CdS shell around CdTe core, greatly change their biodistribution (especially the liver uptake).

  • 1.

    Shen, G., Guyot-Sionnest, P.: HgTe/CdTe and HgSe/CdX (X=S, Se, and Te) core/shell mid-infrared quantum dots. Chem. Mater. 31, 286 (2019).

    • Crossref
    • Export Citation
  • 2.

    Levy, M., Chowdhury, P. P., Eller, K. A., Chatterjee, A., Nagpal, P.: Tuning ternary Zn1–xCdxTe quantum dot composition: engineering electronic states for light-activated superoxide generation as a therapeutic against multidrug-resistant bacteria. ACS Biomater. Sci. Eng. 5, 3111 (2019).

    • Crossref
    • Export Citation
  • 3.

    Li, M., Liang, W., Yuan, R., Chai, Y.: CdTe QD–CeO2 complex as a strong photoelectrochemical signal indicator for the ultrasensitive microRNA assay. ACS Appl. Mater. Interfaces 11, 11834 (2019).

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Levy, M., Courtney, C. M., Chowdhury, P. P., Ding, Y., Grey, E. L., Goodman, S. M., Chatterjee, A., Nagpal, P.: Assessing different reactive oxygen species as potential antibiotics: selectivity of intracellular superoxide generation using quantum dots. ACS Appl. Bio Mater. 1, 529 (2018).

    • Crossref
    • Export Citation
  • 5.

    Jie, G., Li, C., Zhao, Y., Kuang, Q., Niu, S.: Fluorescent Mn:ZnCdS@ZnS and CdTe quantum dots probes on SiO2 microspheres for versatile detection of carcinoembryonic antigen and monitoring T4 polynucleotide kinase activity. ACS Appl. Nano Mater. 2, 4637 (2019).

    • Crossref
    • Export Citation
  • 6.

    Fazaeli, Y., Akhavan, O., Rahighi, R., Aboudzadeh, M. R., Karimi, E., Afarideh, H.: In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C 45, 196 (2014).

    • Crossref
    • Export Citation
  • 7.

    Fazaeli, Y., Feizi, S., Jalilian, A. R., Hejrani, A.: Grafting of [64Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl. Radiat. Isot. 112, 13 (2016).

    • Crossref
    • Export Citation
  • 8.

    Gangadaran, P., Hong, C. M., Oh, J. M., Rajendran, R. L., Kalimuthu, S., Son, S. H., Gopal, A., Zhu, L., Baek, S. H., Jeong, S. Y., Lee, S. W., Lee, J., Ahn, B. C.: In vivo non-invasive imaging of radio-labeled exosome-mimetics derived from red blood cells in mice. Front Pharmacol. 9, 817 (2018).

    • Crossref
    • PubMed
    • Export Citation
  • 9.

    Hasanzadeh, L., Oskuee, R. K., Sadri, K., Nourmohammadi, E., Mohajeri, M., Mardani, Z., Hashemzadeh, A., Darroudi, M.: Green synthesis of labeled CeO2 nanoparticles with (99m)Tc and its biodistribution evaluation in mice. Life Sci. 212, 233 (2018).

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Fazaeli, Y., Zare, H., Karimi, S., Rahighi, R., Feizi, S.: Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology. Appl. Phys. A 123, 507 (2017).

    • Crossref
    • Export Citation
  • 11.

    Sun, H., Buhro, W. E.: Core–shell cadmium telluride quantum platelets with absorptions spanning the visible spectrum. ACS Nano 13, 6982 (2019).

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Hoshyar, N., Gray, S., Han, H., Bao, G.: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 11, 673 (2016).

    • Crossref
    • PubMed
    • Export Citation
  • 13.

    Fazaeli, Y., Jalilian, A. R., Feizi, S., Shadanpour, N.: Development of a radiothallium (III) labeld porphyrin complex as a potential imaging agent. Radiochim. Acta. 101, 795 (2013).

  • 14.

    Wang, C. L., Zhang, H., Zhang, J. H., Li, M. J., Sun, H. Z., Yang, B.: Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core−shell nanocrystals. J. Phys. Chem. C 111, 2465 (2007).

    • Crossref
    • Export Citation
  • 15.

    Wang, C., Zhang, H., Zhang, J., Lv, N., Li, M., Sun, H., Yang, B.: Ligand dynamics of aqueous CdTe nanocrystals at room temperature. J. Phys. Chem. C 112, 6330 (2008).

    • Crossref
    • Export Citation
  • 16.

    Duraj, S. A., Hepp, A. F., Woloszynek, R., Protasiewicz, J. D., Dequeant, M., Ren, T.: Synthesis of two new group 13 benzoato–chloro complexes: a structural study of gallium and indium chelating carboxylates. Inorganica Chim. Acta 365, 54 (2011).

    • Crossref
    • Export Citation
  • 17.

    Tong, Y.-P., Lin, Y.-W.: Synthesis and structure of a novel mixed-ligand electroluminescence-relevant complex of gallium(III) with 2-(2′-hydroxylphenyl)benzothiazole and acetate, and a theoretical investigation on effect of ancillary ligand on solid stacking structure, electroluminescent wavelength shift and other changes in photophysical properties compared to its conventional tris-chelate electroluminescence-relevant counterpart. Synth. Met. 160, 1662 (2010).

  • 18.

    Ming Wang, X., Qing Fan, R., Sheng Qiang, L., Qi Li, W., Wang, P., Jie Zhang, H., Lin Yang, Y.: Tunable luminescence from rare 2D Ga(iii)/In(iii) coordination polymers coexisting with three different conjugated system aromatic ligands. Chem. Commun. 50, 5023 (2014).

    • Crossref
    • Export Citation
  • 19.

    Kowolik, K., Shanmugam, M., Myers, T. W., Cates, C. D., Berben, L. A.: A redox series of gallium(iii) complexes: ligand-based two-electron oxidation affords a gallium-thiolate complex. Dalton Trans. 41, 7969 (2012).

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Stodilka, R. Z., Carson, J. J. L., Yu, K., Zaman, M. B., Li, C., Wilkinson, D.: Optical degradation of CdSe/ZnS quantum dots upon gamma-ray irradiation. J. Phys. Chem. C 113, 2580 (2009).

    • Crossref
    • Export Citation
  • 21.

    Lee, H., Kim, C., Lee, D., Park, J. H., Searson, P. C., Lee, K. H.: Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis. Int. J. Nanomed. 12, 4397 (2017).

    • Crossref
    • Export Citation
  • 22.

    García-Cortés, M., Fernández-Argüelles, M. T., Costa-Fernández, J. M., Sanz-Medel, A.: Sensitive prostate specific antigen quantification using dihydrolipoic acid surface-functionalized phosphorescent quantum dots. Anal. Chim. Acta 987, 118 (2017).

    • Crossref
    • PubMed
    • Export Citation
  • 23.

    Demir, G. M., Ilhan, M., Akkol, E. K., Taştan, H., Işık, A., Değim, İ. T.: Effect of Paclitaxel loaded chitosan nanoparticles and quantum dots on breast cancer. Proceedings 1, 1074 (2017).

    • Crossref
    • Export Citation
  • 24.

    Yang, R. S., Chang, L. W., Wu, J. P., Tsai, M. H., Wang, H. J., Kuo, Y. C., Yeh, T. K., Yang, C. S., Lin, P.: Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect 115, 1339 (2007).

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Choi, H. S., Liu, W., Misra, P., Tanaka, E., Zimmer, J. P., Itty Ipe, B., Bawendi, M. G., Frangioni, J. V.: Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165 (2007).

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Schipper, M. L., Cheng, Z., Lee, S.-W., Bentolila, L. A., Iyer, G., Rao, J., Chen, X., Wu, A. M., Weiss, S., Gambhir, S. S.: microPET-based biodistribution of quantum dots in living mice. J. Nuclear Med. 48, 1511 (2007).

    • Crossref
    • Export Citation
  • 27.

    Schipper, M. L., Iyer, G., Koh, A. L., Cheng, Z., Ebenstein, Y., Aharoni, A., Keren, S., Bentolila, L. A., Li, J., Rao, J., Chen, X., Banin, U., Wu, A. M., Sinclair, R., Weiss, S., Gambhir, S. S.: Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5, 126 (2009).

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Weng, K. C., Noble, C. O., Papahadjopoulos-Sternberg, B., Chen, F. F., Drummond, D. C., Kirpotin, D. B., Wang, D., Hom, Y. K., Hann, B., Park, J. W.: Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 8, 2851 (2008).

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Jin, S., Hu, Y., Gu, Z., Liu, L., Wu, H.-C.: Application of quantum dots in biological imaging. J. Nanomater. 2011, 13 (2011).

  • 30.

    Sun, P., Zhang, H., Liu, C., Fang, J., Wang, M., Chen, J., Zhang, J., Mao, C., Xu, S.: Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir 26, 1278 (2010).

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Radiochimica Acta publishes original papers, review articles, and “rapid communications” (short articles of a more timely interest) on all chemical aspects of nuclear science and technology. The journal is geared toward scientists who are actively engaged in research work.

Search