Importance of Riparian Zone: Effects of Resource Availability at Land-water Interface

Hongyong Xiang 1 , Yixin Zhang 2 ,  and John. S. Richardson 3
  • 1 Huai’an Research Institute of New-Type Urbanization, Department of Environmental Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China 215123
  • 2 Huai’an Research Institute of New-Type Urbanization, Department of Environmental Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
  • 3 Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada

Abstract

Riparian zone provides a variety of resources to organisms, including availability of water and subsidies. Water availability in riparian areas influences species distribution and trophic interaction of terrestrial food webs. Cross-ecosystem subsidies as resource flux of additional energy, nutrients, and materials benefit riparian populations and communities (e.g. plants, spiders, lizards, birds and mammals). However, aquatic ecosystems and riparian zones are prone to anthropogenic disturbances, which change water availability and affect the flux dynamics of cross-system subsidies. Yet, we still lack sufficient empirical studies assessing impacts of disturbances of land use, climate change and invasive species individually and interactively on aquatic and riparian ecosystems through influencing subsidy resource availability. In filling this knowledge gap, we can make more effective efforts to protect and conserve riparian habitats and biodiversity, and maintain riparian ecosystem functioning and services.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Richardson J.S., Zhang Y., Marczak L.B., Resource subsidies across the land-freshwater interface and responses in recipient communities, River Res. Applicat., 2010, 26, 55-66.

  • [2] Sabo J.L., Power M.E., River-watershed exchange: Effects of riverine subsidies on riparian lizards and their terrestrial prey, Ecology, 2002, 83, 1860-1869.

  • [3] Polis G.A., Anderson W.B., Holt R.D., Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs, Ann. Rev. Ecol. Syst., 1997, 28, 289-316.

  • [4] Gratton C., Donaldson J., Vander Zanden M.J., Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland, Ecosystems, 2008, 11, 764-774.

  • [5] Nakano S., Miyasaka H., Kuhara N., Terrestrial-aquatic linkages: Riparian arthropod inputs alter trophic cascades in a stream food web, Ecology, 1999, 80, 2435-2441.

  • [6] Baxter C.V., Fausch K.D., Saunders W.C., Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones, Freshwater Biol., 2005, 50, 201-220.

  • [7] Marczak L.B., Thompson R.M., Richardson J.S., Meta-analysis: Trophic level, habitat, and productivity shape the food web effects of resource subsidies, Ecology, 2007, 88, 140-148.

  • [8] Zhang Y., Richardson J.S., Contrasting effects of crossecosystem subsidies and predation on benthic invertebrates in two Pacific coastal streams, Aquatic Sci., 2011, 73, 53-62.

  • [9] Dreyer J., Townsend P.A., Hook J.C., III, Hoekman D., Vander Zanden M.J., Gratton C., Quantifying aquatic insect deposition from lake to land, Ecology, 2015, 96, 499-509.

  • [10] Richardson J.S., Sato T., Resource subsidy flows across freshwater-terrestrial boundaries and influence on processes linking adjacent ecosystems, Ecohydrology, 2015, 8, 406-415.

  • [11] Soininen J., Bartels P., Heino J., Luoto M., Hillebrand H., Toward more integrated ecosystem research in aquatic and terrestrial environments, Bioscience, 2015, 65, 174-182.

  • [12] Wallace J.B., Eggert S.L., Meyer J.L., Webster J.R., Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data, Ecology, 2015, 96, 1213-1228.

  • [13] Moon D.C., Silva D., Environmental heterogeneity mediates a cross-ecosystem trophic cascade, Ecol. Entomol., 2013, 38, 23-30.

  • [14] Álvarez-Romero J.G., Pressey R.L., Ban N.C., Vance-Borland K., Willer C., Klein C.J. et al., Integrated land-sea conservation planning: the missing links, Ann. Rev. Ecol. Evol. Syst., 2011, 42, 381-409.

  • [15] Likens G.E., Bormann F.H., Linkages between terrestrial and aquatic ecosystems, Bioscience, 1974, 24, 447-456.

  • [16] Sabo J.L., Power M.E., Numerical response of lizards to aquatic insects and short-term consequences for terrestrial prey, Ecology, 2002, 83, 3023-3036.

  • [17] Chan E.K.W., Zhang Y., Dudgeon D., Contribution of adult aquatic insects to riparian prey availability along tropical forest streams, Marine Freshwater Res., 2007, 58, 725-732.

  • [18] Bartrons M., Papes M., Diebel M.W., Gratton C., Vander Zanden M.J., Regional-level inputs of emergent aquatic insects from water to land, Ecosystems, 2013, 16, 1353-1363.

  • [19] Marczak L.B., Richardson J.S., Spiders and subsidies: results from the riparian zone of a coastal temperate rainforest, J. Animal Ecol., 2007, 76, 687-694.

  • [20] Flecker A.S., McIntyre P.B., Moore J.W., Anderson J.T., Taylor B.W., Hall Jr R.O., Migratory fishes as material and process subsidies in riverine ecosystems, in Community ecology of stream fishes: concepts, approaches, and techniques. Am. Fish. Soc., 2010, 73, 559-592.

  • [21] Wheeler K., Miller S.W., Crowl T.A., Migratory fish excretion as a nutrient subsidy to recipient stream ecosystems, Freshwater Biol., 2015, 60, 537-550.

  • [22] Earl J.E., Castello P.O., Cohagen K.E., Semlitsch R.D., Effects of subsidy quality on reciprocal subsidies: how leaf litter species changes frog biomass export, Oecologia, 2014, 175, 209-218.

  • [23] Nakano S., Murakami M., Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs, PNAS USA, 2001, 98, 166-170.

  • [24] Pusey B.J., Arthington A.H., Importance of the riparian zone to the conservation and management of freshwater fish: a review, Marine Freshwater Res., 2003, 54, 1-16.

  • [25] Wipfli M.S., Baxter C.V., Linking ecosystems, food webs, and fish production: subsidies in salmonid watersheds, Fisheries, 2010, 35, 373-387.

  • [26] Subalusky A.L., Dutton C.L., Rosi-Marshall E.J., Post D.M., The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa, Freshwater Biol., 2015, 60, 512-525.

  • [27] Burdon F.J., Harding J.S., The linkage between riparian predators and aquatic insects across a stream-resource spectrum, Freshwater Biol., 2008, 53, 330-346.

  • [28] Baxter C.V., Fausch K.D., Murakami M., Chapman P.L., Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies, Ecology, 2004, 85, 2656-2663.

  • [29] Wesner J.S., Predator diversity effects cascade across an ecosystem boundary, Oikos, 2012, 121, 53-60.

  • [30] Zalewski M., Ecohydrology - the scientific background to use ecosystem properties as management tools toward sustainability of water resources, Ecol. Eng., 2000, 16, 1-8.

  • [31] Jackson R.B., Jobbagy E.G., Nosetto M.D., Ecohydrology in a human-dominated landscape, Ecohydrology, 2009, 2, 383-389.

  • [32] Petkovska V., Urbanic G., The links between morphological parameters and benthic invertebrate assemblages, and general implications for hydromorphological river management, Ecohydrology, 2015, 8, 67-82.

  • [33] Ekness P., Randhir T., Effects of riparian areas, stream order, and land use disturbance on watershed-scale habitat potential: an ecohydrologic approach to policy, J. Am. Water Resour. Assoc., 2007, 43, 1468-1482.

  • [34] Sabo J.L., McCluney K.E., Marusenko Y., Keller A., Soykan C.U., Greenfall links groundwater to aboveground food webs in desert river floodplains, Ecol. Monographs, 2008, 78, 615-631.

  • [35] Cottingham K.L., Narayan L., Subsidy quantity and recipient community structure mediate plankton responses to autumn leaf drop, Ecosphere, 2013, 4, 89.

  • [36] Marcarelli A.M., Baxter C.V., Mineau M.M., Hall R.O., Jr., Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters, Ecology, 2011, 92, 1215-1225.

  • [37] Jardine T., Roussel J., Mitchell S.C., Cunjak R.A., Detecting marine nutrient and organic matter inputs into multiple trophic levels in streams of Atlantic Canada, in challenges for diadromous fishes in a dynamic global environment, Am. Fisheries Soc., 2009, 69, 427-445.

  • [38] Huxel G.R., McCann K., Food web stability: The influence of trophic flows across habitats, Am. Nat., 1998, 152, 460-469.

  • [39] Stoler A.B., Relyea R.A., Leaf litter quality induces morphological and developmental changes in larval amphibians, Ecology, 2013, 94, 1594-1603.

  • [40] Huxel G.R., McCann K., Polis G.A., Effects of partitioning allochthonous and autochthonous resources on food web stability, Ecol. Res., 2002, 17, 419-432.

  • [41] Holt R.D., Theoretical perspectives on resource pulses, Ecology, 2008, 89, 671-681.

  • [42] Takimoto G., Iwata T., Murakami M., Timescale hierarchy determines the indirect effects of fluctuating subsidy inputs on in situ resources, Am. Nat., 2009, 173, 200-211.

  • [43] Yang L.H., Edwards K.F., Byrnes J.E., Bastow J.L., Wright A.N., Spence K.O., A meta-analysis of resource pulse-consumer interactions, Ecol. Mon., 2010, 80, 125-151.

  • [44] Lisi P.J., Bentley K.T., Armstrong J.B., Schindler D.E., Episodic predation of mammals by stream fishes in a boreal river basin, Ecol. Freshwater Fish, 2014, 23, 622-630.

  • [45] Klemmer A.J., Richardson J.S., Quantitative gradient of subsidies reveals a threshold in community-level trophic cascades, Ecology, 2013, 94, 1920-1926.

  • [46] Allen D.C., Vaughn C.C., Kelly J.F., Cooper J.T., Engel M.H., Bottom-up biodiversity effects increase resource subsidy flux between ecosystems, Ecology, 2012, 93, 2165-2174.

  • [47] Leroux S.J., Loreau M., Subsidy hypothesis and strength of trophic cascades across ecosystems, Ecol. Lett., 2008, 11, 1147-1156.

  • [48] Shurin J.B., Borer E.T., Seabloom E.W., Anderson K., Blanchette C.A., Broitman B. et al., A cross-ecosystem comparison of the strength of trophic cascades, Ecol. Lett., 2002, 5, 785-791.

  • [49] Halaj J., Wise D.H., Terrestrial trophic cascades: how much do they trickle?, Am. Nat., 2001, 157, 262-281.

  • [50] Schlacher T.A., Cronin G., A trophic cascade in a macrophytebased food web at the land-water ecotone, Ecol. Res., 2007, 22, 749-755.

  • [51] Shurin J.B., Gruner D.S., Hillebrand H., Shurin J.B., Gruner D.S., Hillebrand H., All wet or dried up? real differences between aquatic and terrestrial food webs, Proc. R. Soc. London B, 2006, 273, 1-9.

  • [52] Gratton C., Vander Zanden M.J., Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems, Ecology, 2009, 90, 2689-2699.

  • [53] Fukui D., Murakami M., Nakano S., Aoi T., Effect of emergent aquatic insects on bat foraging in a riparian forest, J. Animal Ecol., 2006, 75, 1252-1258.

  • [54] Hoekman D., Dreyer J., Jackson R.D., Townsend P.A., Gratton C., Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities, Ecology, 2011, 92, 2063-2072.

  • [55] Paetzold A., Bernet J.F., Tockner K., Consumer-specific responses to riverine subsidy pulses in a riparian arthropod assemblage, Freshwater Biol., 2006, 51, 1103-1115.

  • [56] Atlas W.I., Palen W.J., Courcelles D.M., Munshaw R.G., Monteith Z.L., Dependence of stream predators on terrestrial prey fluxes: food web responses to subsidized predation, Ecosphere, 2013, 4, 69.

  • [57] Gonsalves L., Law B., Webb C., Monamy V., Foraging ranges of insectivorous bats shift relative to changes in mosquito abundance, PLoS One, 2013, 8, e64081.

  • [58] Chan E.K.W., Zhang Y., Dudgeon D., Substrate availability may be more important than aquatic insect abundance in the distribution of riparian orb-web spiders in the tropics, Biotropica, 2009, 41, 196-201.

  • [59] Benjamin J.R., Fausch K.D., Baxter C.V., Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders, Oecologia, 2011, 167, 503-512.

  • [60] Kato C., Iwata T., Nakano S., Kishi D., Dynamics of aquatic insect flux affects distribution of riparian web-building spiders, Oikos, 2003, 103, 113-120.

  • [61] Briers R.A., Cariss H.M., Geoghegan R., Gee J.H.R., The lateral extent of the subsidy from an upland stream to riparian lycosid spiders, Ecography, 2005, 28, 165-170.

  • [62] Walters D.M., Mills M.A., Fritz K.M., Raikow D.F., Spidermediated flux of pcbs from contaminated sediments to terrestrial ecosystems and potential risks to arachnivorous birds, Environ. Sci. Technol., .2010, 44, 2849-2856.

  • [63] Bartrons M., Gratton C., Spiesman B.J., Vander Zanden M.J., Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web, Ecol. Applicat., 2015, 25, 151-159.

  • [64] Hagen E.M., Sabo J.L., Temporal variability in insectivorous bat activity along two desert streams with contrasting patterns of prey availability, J. Arid Environ., 2014, 102, 104-112.

  • [65] Gonsalves L., Lamb S., Webb C., Law B., Monamy V., Do mosquitoes influence bat activity in coastal habitats?, Wildlife Res., 2013, 40, 10-24.

  • [66] Hagen E.M., Sabo J.L., Influence of river drying and insect availability on bat activity along the San Pedro River, Arizona (USA), J. Arid Environ., 2012, 84, 1-8.

  • [67] Razgour O., Korine C., Saltz D., Does interspecific competition drive patterns of habitat use in desert bat communities?, Oecologia, 2011, 167, 493-502.

  • [68] Vindigni M.A., Morris A.D., Miller D.A., Kalcounis-Rueppell M.C., Use of modified water sources by bats in a managed pine landscape, Forest Ecol. Manag., 2009, 258, 2056-2061.

  • [69] Akasaka T., Nakano D., Nakamura F., Influence of prey variables, food supply, and river restoration on the foraging activity of Daubenton’s bat (Myotis daubentonii) in the Shibetsu River, a large lowland river in Japan, Biol. Conserv., 2009, 142, 1302-1310.

  • [70] Yoshikura S., Yasui S., Kamijo T., Comparative study of forestdwelling bats’ abundances and species richness between old-growth forests and conifer plantations in Nikko National Park, central Japan, Mammal Study, 2011, 36, 189-198.

  • [71] Almenar D., Aihartza J., Goiti U., Salsamendi E., Garin I., Diet and prey selection in the trawling long-fingered bat, J. Zool., 2008, 274, 340-348.

  • [72] Nummi P., Kattainen S., Ulander P., Hahtola A., Bats benefit from beavers: a facilitative link between aquatic and terrestrial food webs, Biodiv. Conserv., 2011, 20, 851-859.

  • [73] Hagen E.M., Sabo J.L., A landscape perspective on bat foraging ecology along rivers: does channel confinement and insect availability influence the response of bats to aquatic resources in riverine landscapes?, Oecologia, 2011, 166, 751-760.

  • [74] Almenar D., Aihartza J., Goiti U., Salsamendi E., Garin I., Hierarchical patch choice by an insectivorous bat through prey availability components, Behav. Ecol. Sociobiol., 2013, 67, 311-320.

  • [75] Monadjem A., Reside A., The influence of riparian vegetation on the distribution and abundance of bats in an African savanna, Acta Chiropterol., 2008, 10, 339-348.

  • [76] Seibold S., Buchner J., Baessler C., Mueller J., Ponds in acidic mountains are more important for bats in providing drinking water than insect prey, J. Zool., 2013, 290, 302-308.

  • [77] Chan E.K.W., Yu Y.-T., Zhang Y., Dudgeon D., Distribution patterns of birds and insect prey in a tropical riparian forest, Biotropica, 2008, 40, 623-629.

  • [78] Gray L.J., Response of insectivorous birds to emerging aquatic insects in riparian habitats of a tallgrass prairie stream, Am. Midland Nat., 1993, 129, 288-300.

  • [79] Epanchin P.N., Knapp R.A., Lawler S.P., Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies, Ecology, 2010, 91, 2406-2415.

  • [80] Uesugi A., Murakami M., Do seasonally fluctuating aquatic subsidies influence the distribution pattern of birds between riparian and upland forests?, Ecol. Res., 2007, 22, 274-281.

  • [81] Iwata T., Urabe J., Mitsuhashi H., Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests, Conserv. Biol., 2010, 24, 1278-1289.

  • [82] Iwata T., Nakano S., Murakami M., Stream meanders increase insectivorous bird abundance in riparian deciduous forests, Ecography, 2003, 26, 325-337.

  • [83] Jonsson M., Strasevicius D., Malmqvist B., Influences of river regulation and environmental variables on upland bird assemblages in northern Sweden, Ecol. Res., 2012, 27, 945-954.

  • [84] Helfield J.M., Naiman R.J., Keystone interactions: Salmon and bear in riparian forests of Alaska, Ecosystems, 2006, 9, 167-180.

  • [85] Beschta R.L., Ripple W.J., The role of large predators in maintaining riparian plant communities and river morphology, Geomorphology, 2012, 157, 88-98.

  • [86] Naiman R.J., Rogers K.H., Large animals and system level characteristics in river corridors, Bioscience, 1997, 47, 521-529.

  • [87] Sergeant C.J., Armstrong J.B., Ward E.J., Predator-prey migration phenologies remain synchronised in a warming catchment, Freshwater Biol., 2015, 60, 724-732.

  • [88] Schindler D.E., Armstrong J.B., Bentley K.T., Jankowski K., Lisi P.J., Payne L.X., Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish, Biol. Lett., 2013, 9, 20130048.

  • [89] Shardlow T.F., Hyatt K.D., Quantifying associations of large vertebrates with salmon in riparian areas of British Columbia streams by means of camera-traps, bait stations, and hair samples, Ecol. Indicators, 2013, 27, 97-107.

  • [90] Koshino Y., Kudo H., Kaeriyama M., Stable isotope evidence indicates the incorporation into Japanese catchments of marine-derived nutrients transported by spawning Pacific Salmon, Freshwater Biol., 2013, 58, 1864-1877.

  • [91] Quinn T.P., Carlson S.M., Gende S.M., Rich H.B., Jr., Transportation of pacific salmon carcasses from streams to riparian forests by bears, Can. J. Zool., 2009, 87, 195-203.

  • [92] Matsubayashi J., Morimoto J., Mano T., Aryal A., Nakamura F., Using stable isotopes to understand the feeding ecology of the Hokkaido brown bear (Ursus arctos) in Japan, Ursus, 2014, 25, 87-97.

  • [93] Van Daele M.B., Robbins C.T., Semmens B.X., Ward E.J., Van Daele L.J., Leacock W.B., Salmon consumption by kodiak brown bears (Ursus arctos middendorffi) with ecosystem management implications, Can. J. Zool., 2013, 91, 164-174.

  • [94] Hilderbrand G.V., Hanley T.A., Robbins C.T., Schwartz C.C., Hilderbrand G.V., Hanley T.A. et al., Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem, Oecologia, 1999, 121, 546-550.

  • [95] Gende S.M., Quinn T.P., Willson M.F., Heintz R., Scott T.M., Magnitude and fate of salmon-derived nutrients and energy in a coastal stream ecosystem, J. Freshwater Ecol., 2004, 19, 149-160.

  • [96] Gende S.M., Edwards R.T., Willson M.F., Wipfli M.S., Pacific salmon in aquatic and terrestrial ecosystems, Bioscience, 2002, 52, 917-928.

  • [97] Gende S.M., Miller A.E., Hood E., The effects of salmon carcasses on soil nitrogen pools in a riparian forest of southeastern alaska, Can. J. Forest Res., 2007, 37, 1194-1202.

  • [98] Bartz K.K., Naiman R.J., Effects of salmon-borne nutrients on riparian soils and vegetation in southwest Alaska, Ecosystems, 2005, 8, 529-545.

  • [99] Meehan E.P., Seminet-Reneau E.E., Quinn T.P., Bear predation on pacific salmon facilitates colonization of carcasses by fly maggots, Am. Midland Nat., 2005, 153, 142-151.

  • [100] Hocking M.D., Reynolds J.D., Impacts of salmon on riparian plant diversity, Science, 2011, 331, 1609-1612.

  • [101] Field R.D., Reynolds J.D., Sea to sky: impacts of residual salmon-derived nutrients on estuarine breeding bird communities, Proc. R. Soc.London B, 2011, 278, 3081-3088.

  • [102] Helfield J.M., Naiman R.J., Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity, Ecology, 2001, 82, 2403-2409.

  • [103] Hocking M.D., Ring R.A., Reimchen T.E., Burying beetle Nicrophorus investigator reproduction on Pacific salmon carcasses, Ecol. Entomol., 2006, 31, 5-12.

  • [104] McCauley D.J., Dawson T.E., Power M.E., Finlay J.C., Ogada M., Gower D.B. et al., Carbon stable isotopes suggest that hippopotamus-vectored nutrients subsidize aquatic consumers in an East African river, Ecosphere, 2015, 6, 52.

  • [105] Anderson C.B., Rosemond A.D., Beaver invasion alters terrestrial subsidies to subantarctic stream food webs, Hydrobiologia, 2010, 652, 349-361.

  • [106] Wardle D.A., Bardgett R.D., Callaway R.M., Van der Putten W.H., Terrestrial ecosystem responses to species gains and losses, Science, 2011, 332, 1273-1277.

  • [107] Masese F.O., Abrantes K.G., Gettel G.M., Bouillon S., Irvine K., McClain M.E., Are large herbivores vectors of terrestrial subsidies for riverine food webs?, Ecosystems, 2015, 18, 686-706.

  • [108] Francis T.B., Schindler D.E., Shoreline urbanization reduces terrestrial insect subsidies to fishes in North American lakes, Oikos, 2009, 118, 1872-1882.

  • [109] Kawaguchi Y., Nakano S., Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream, Freshwater Biol., 2001, 46, 303-316.

  • [110] Spiller D.A., Piovia-Scott J., Wright A.N., Yang L.H., Takimoto G., Schoener T.W. et al., Marine subsidies have multiple effects on coastal food webs, Ecology, 2010, 91, 1424-1434.

  • [111] Bultman H., Hoekman D., Dreyer J., Gratton C., Terrestrial deposition of aquatic insects increases plant quality for insect herbivores and herbivore density, Ecol. Entomol., 2014, 39, 419-426.

  • [112] Bobbink R., Hicks K., Galloway J., Spranger T., Alkemade R., Ashmore M. et al., Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis, Ecol. Applicat., 2010, 20, 30-59.

  • [113] Wesner J.S., Aquatic predation alters a terrestrial prey subsidy, Ecology, 2010, 91, 1435-1444.

  • [114] Knight T.M., McCoy M.W., Chase J.M., McCoy K.A., Holt R.D., Trophic cascades across ecosystems, Nature, 2005, 437, 880-883.

  • [115] Piovia-Scott J., Spiller D.A., Schoener T.W., Effects of experimental seaweed deposition on lizard and ant predation in an island food web, Science, 2011, 331, 461-463.

  • [116] Kraus J.M., Schmidt T.S., Walters D.M., Wanty R.B., Zuellig R.E., Wolf R.E., Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs, Ecol. Applicat., 2014, 24, 235-243.

  • [117] Walters D.M., Fritz K.M., Otter R.R., The dark side of subsidies: adult stream insects export organic contaminants to riparian predators, Ecol. Applicat., 2008, 18, 1835-1841.

  • [118] Tiegs S.D., Chaloner D.T., Levi P., Rueegg J., Tank J.L., Lamberti G.A., Timber harvest transforms ecological roles of salmon in southeast Alaska rain forest streams, Ecol. Applicat., 2008, 18, 4-11.

  • [119] Stenroth K., Polvi L.E., Faltstrom E., Jonsson M., Land-use effects on terrestrial consumers through changed size structure of aquatic insects, Freshwater Biol., 2015, 60, 136-149.

  • [120] Matson P.A., Parton W.J., Power A.G., Swift M.J., Agricultural intensification and ecosystem properties, Science, 1997, 277, 504-509.

  • [121] Board M.A., Millennium ecosystem assessment, Washington, DC: New Island, 2005.

  • [122] Allan J.D., Landscapes and riverscapes: The influence of land use on stream ecosystems, Annual Rev. Ecol. Evol. Syst., 2004, 35, 257-284.

  • [123] Zhang Y., Dudgeon D., Cheng D., Thoe W., Fok L., Wang Z. et al., Impacts of land use and water quality on macroinvertebrate communities in the pearl river drainage basin, China, Hydrobiologia, 2010, 652, 71-88.

  • [124] Moore J.W., Lambert T.D., Heady W.N., Honig S.E., Osterback A.-M.K., Phillis C.C. et al., Anthropogenic land-use signals propagate through stream food webs in a California, USA, watershed, Limnologica, 2014, 46, 124-130.

  • [125] Boechat I.G., Kruger A., Chaves R.C., Graeber D., Giicker B., Land-use impacts on fatty acid profiles of suspended particulate organic matter along a larger tropical river, Sci. Total Environ., 2014, 482, 62-70.

  • [126] Binckley C.A., Wipfli M.S., Medhurst R.B., Polivka K., Hessburg P., Salter R.B. et al., Ecoregion and land-use influence invertebrate and detritus transport from headwater streams, Freshwater Biol., 2010, 55, 1205-1218.

  • [127] Jonsson M., Hedstrom P., Stenroth K., Hotchkiss E.R., Vasconcelos F.R., Karlsson J. et al., Climate change modifies the size structure of assemblages of emerging aquatic insects, Freshwater Biol., 2015, 60, 78-88.

  • [128] Piggott J.J., Townsend C.R., Matthaei C.D., Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics, Global Change Biol., 2015, 21, 1887-1906.

  • [129] Greig H.S., Kratina P., Thompson P.L., Palen W.J., Richardson J.S., Shurin J.B., Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems, Global Change Biol., 2012, 18, 504-514.

  • [130] Armstrong J.B., Schindler D.E., Omori K.L., Ruff C.P., Quinn T.P., Thermal heterogeneity mediates the effects of pulsed subsidies across a landscape, Ecology, 2010, 91, 1445-1454.

  • [131] Kovach R.P., Joyce J.E., Echave J.D., Lindberg M.S., Tallmon D.A., Earlier migration timing, decreasing phenotypic variation, and biocomplexity in multiple salmonid species, PLoS One, 2013, 8, e53807.

  • [132] Leberfinger K., Bohman I., Herrmann J., Drought impact on stream detritivores: experimental effects on leaf litter breakdown and life cycles, Hydrobiologia, 2010, 652, 247-254.

  • [133] Kiffney P.M., Bull J.P., Feller M.C., Climatic and hydrologic variability in a coastal watershed of southwestern British Columbia, J. Am. Water Resour. Assoc., 2002, 38, 1437-1451.

  • [134] Bódis E., Tóth B., Sousa R., Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web, Hydrobiologia, 2014, 735, 253-262.

  • [135] Hladyz S., Abjornsson K., Giller P.S., Woodward G., Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs, J. App. Ecol., 2011, 48, 443-452.

  • [136] Kominoski J.S., Shah J.J.F., Canhoto C., Fischer D.G., Giling D.P., Gonzalez E. et al., Forecasting functional implications of global changes in riparian plant communities, Front. Ecol. Environ., 2013, 11, 423-432.

  • [137] Mineau M.M., Baxter C.V., Marcarelli A.M., A non-native riparian tree (Elaeagnus angustifolia) changes nutrient dynamics in streams, Ecosystems, 2011, 14, 353-365.

  • [138] Mineau M.M., Baxter C.V., Marcarelli A.M., Minshall G.W., An invasive riparian tree reduces stream ecosystem efficiency via a recalcitrant organic matter subsidy, Ecology, 2012, 93, 1501-1508.

  • [139] Taylor S.L., Bishop M.J., Kelaher B.P., Glasby T.M., Impacts of detritus from the invasive alga Caulerpa taxifolia on a soft sediment community, Marine Ecol. Progress Ser., 2010, 420, 73-81.

  • [140] Bishop M.J., Kelaher B.P., Replacement of native seagrass with invasive algal detritus: impacts to estuarine sediment communities, Biol. Inv., 2013, 15, 45-59.

  • [141] Boltovskoy D., Correa N., Ecosystem impacts of the invasive bivalve Limnoperna fortunei (golden mussel) in South America, Hydrobiologia, 2015, 746, 81-95.

  • [142] Rodriguez L.F., Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur, Biol. Inv., 2006, 8, 927-939.

  • [143] Bašic T., Britton J.R., Jackson M.C., Reading P., Grey J., Angling baits and invasive crayfish as important trophic subsidies for a large cyprinid fish, Aquatic Sci., 2015, 77, 153-160.

  • [144] Allen D.C., McCluney K.E., Elser S.R., Sabo J.L., Water as a trophic currency in dryland food webs, Front. Ecol. Environ., 2014, 12, 156-160.

  • [145] McCluney K.E., Belnap J., Collins S.L., Gonzalez A.L., Hagen E.M., Holland J.N. et al., Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change, Biol. Rev., 2012, 87, 563-582.

  • [146] McCluney K.E., Sabo J.L., Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders, PLoS One, 2010, 5, e15696.

  • [147] McCluney K.E., Sabo J.L., Water availability directly determines per capita consumption at two trophic levels, Ecology, 2009, 90, 1463-1469.

  • [148] Soykan C.U., Sabo J.L., Spatiotemporal food web dynamics along a desert riparian–upland transition, Ecography, 2009, 32, 354-368.

  • [149] Suttle K.B., Thomsen M.A., Power M.E., Species interactions reverse grassland responses to changing climate, Science, 2007, 315, 640-642.

  • [150] McCluney K., Sabo J.L., River drying lowers the diversity and alters the composition of an assemblage of desert riparian arthropods, Freshwater Biol., 2012, 57, 91-103.

  • [151] Sabo J.L., Finlay J.C., Kennedy T., Post D.M., The role of discharge variation in scaling of drainage area and food chain length in rivers, Science, 2010, 330, 965-967.

  • [152] Paetzold A., Smith M., Warren P.H., Maltby L., Environmental impact propagated by cross-system subsidy: chronic stream pollution controls riparian spider populations, Ecology, 2011, 92, 1711-1716.

  • [153] Kuglerová L., Jansson R., Ågren A., Laudon H., Malm-Renöfält B., Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network, Ecology, 2014, 95, 715-725.

  • [154] Lowry C.S., Loheide S.P., II, Groundwater-dependent vegetation: quantifying the groundwater subsidy, Water Resour. Res., 2010, 46, W06202.

  • [155] Costelloe J.F., Payne E., Woodrow I.E., Irvine E.C., Western A.W., Leaney F.W., Water sources accessed by arid zone riparian trees in highly saline environments, Australia, Oecologia, 2008, 156, 43-52.

  • [156] Douglas M.M., Bunn S.E., Davies P.M., River and wetland food webs in Australia’s wet-dry tropics: general principles and implications for management, Marine Freshwater Res., 2005, 56, 329-342.

  • [157] Benke A.C., Chaubey I., Ward G.M., Dunn E.L., Flood pulse dynamics of an unregulated river floodplain in the southeastern US coastal plain, Ecology, 2000, 81, 2730-2741.

  • [158] Drinkard M.K., Kershner M.W., Romito A., Nieset J., de Szalay F.A., Responses of plants and invertebrate assemblages to water-level fluctuation in headwater wetlands, J. North Am. Benthol. Soc., 2011, 30, 981-996.

  • [159] Ives A.R., Einarsson A., Jansen V.A.A., Gardarsson A., High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn, Nature, 2008, 452, 84-87.

  • [160] O’Callaghan M.J., Hannah D.M., Boomer I., Williams M., Sadler J.P., Responses to river inundation pressures control prey selection of riparian beetles, PLoS One, 2013, 8, e61866.

  • [161] Withers P.J.A., Jarvie H.P., Delivery and cycling of phosphorus in rivers: a review, Sci. Total Environ., 2008, 400, 379-395.

  • [162] Imberger S.J., Thompson R.M., Grace M.R., Urban catchment hydrology overwhelms reach scale effects of riparian vegetation on organic matter dynamics, Freshwater Biol., 2011, 56, 1370-1389.

  • [163] Antonio E.S., Ueno M., Yamashita Y., Kasai A., Ishihi Y., Yokoyama H., Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient, Estuarine Coastal Shelf Sci., 2012, 112, 86-97.

  • [164] Freeman M.C., Pringle C.M., Jackson C.R., Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales, J. Am. Water Resour. Assoc., 2007, 43, 5-14.

  • [165] Adame M.F., Lovelock C.E., Carbon and nutrient exchange of mangrove forests with the coastal ocean, Hydrobiologia, 2011, 663, 23-50.

  • [166] Leigh C., Reis T.M., Sheldon F., High potential subsidy of dry-season aquatic fauna to consumers in riparian zones of wet-dry tropical rivers, Inland Waters, 2013, 3, 411-420.

  • [167] Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z.-I., Knowler D.J., Leveque C. et al., Freshwater biodiversity: importance, threats, status and conservation challenges, Biol. Rev., 2006, 81, 163-182.

  • [168] Décamps H., River networks as biodiversity hotlines, C. R. Biol., 2011, 334, 420-434.

  • [169] Allan J.D., Flecker A.S., Biodiversity conservation in running waters, Bioscience, 1993, 43, 32-43.

  • [170] Inoue M., Sakamoto S., Kikuchi S., Terrestrial prey inputs to streams bordered by deciduous broadleaved forests, conifer plantations and clear-cut sites in southwestern Japan: effects on the abundance of red-spotted masu salmon, Ecol. Freshwater Fish, 2013, 22, 335-347.

  • [171] Saunders W.C., Fausch K.D., Grazing management influences the subsidy of terrestrial prey to trout in central Rocky Mountain streams (USA), Freshwater Biol., 2012, 57, 1512-1529.

  • [172] Wipfli M.S., Hudson J.P., Caouette J.P., Restoring productivity of salmon-based food webs: Contrasting effects of salmon carcass and salmon carcass analog additions on streamresident salmonids, Trans. Am. Fisheries Soc., 2004, 133, 1440-1454.

  • [173] Darimont C.T., Bryan H.M., Carlson S.M., Hocking M.D., MacDuffee M., Paquet P.C. et al., Salmon for terrestrial protected areas, Conserv. Lett., 2010, 3, 379-389.

  • [174] Schindler D.E., Leavitt P.R., Brock C.S., Johnson S.P., Quay P.D., Marine-derived nutrients, commercial fisheries, and production of salmon and lake algae in Alaska, Ecology, 2005, 86, 3225-3231.

  • [175] Heinrich K.K., Whiles M.R., Roy C., Cascading ecological responses to an in-stream restoration project in a midwestern river, Restor. Ecol., 2014, 22, 72-80.

  • [176] Howe E.R., Simenstad C.A., Isotopic determination of food web origins in restoring and ancient estuarine wetlands of the San Francisco bay and delta, Estuaries Coasts, 2011, 34, 597-617.

  • [177] Kominoski J.S., Larranaga S., Richardson J.S., Invertebrate feeding and emergence timing vary among streams along a gradient of riparian forest composition, Freshwater Biol., 2012, 57, 759-772.

  • [178] Malmqvist B., Adler P.H., Kuusela K., Merritt R.W., Wotton R.S., Black flies in the boreal biome, key organisms in both terrestrial and aquatic environments: a review, Ecoscience, 2004, 11, 187-200.

  • [179] Helmus M.R., Mercado-Silva N., Vander Zanden M.J., Subsidies to predators, apparent competition and the phylogenetic structure of prey communities, Oecologia, 2013, 173, 997-1007.

  • [180] Compton J.E., Andersen C.P., Phillips D.L., Brooks J.R., Johnson M.G., Church M.R. et al., Ecological and water quality consequences of nutrient addition for salmon restoration in the Pacific Northwest, Front. Ecol. Environ., 2006, 4, 18-26.

  • [181] Menzie C.A., Potential significance of insects in the removal of contaminants from aquatic systems, Water Air Soil Pollut., 1980, 13, 473-479.

  • [182] Schmidt T.S., Kraus J.M., Walters D.M., Wanty R.B., Emergence flux declines disproportionately to larval density along a stream metals gradient, Environ. Sci. Technol., 2013, 47, 8784-8792.

  • [183] White G.B., Man-biting species of Chrysops Meigen, Culicoides Latreille and Simulium Latreille in Ethiopia, with discussion of their vector potentialities, Trans. R. Soc. Tropical Med. Hygiene, 1977, 71, 161-175.

  • [184] Herman C.M., Barrow J.H., Jr., Tarshis I.B., Leucocytozoonosis in Canada geese at the Seney national wildlife refuge, J. Wildlife Dis., 1975, 11, 404-411.

  • [185] Allen D.C., Cardinale B.J., Wynn-Thompson T., Toward a better integration of ecological principles into ecogeoscience research, Bioscience, 2014, 64, 444-454.

  • [186] Singer G.A., Battin T.J., Anthropogenic subsidies alter stream consumer-resource stoichiometry, biodiversity, and food chains, Ecol. Applicat., 2007, 17, 376-389.

  • [187] Whitham T.G., Bailey J.K., Schweitzer J.A., Shuster S.M., Bangert R.K., LeRoy C.J., Lonsdorf E.V., Allan G.J., DiFazio S.P., Potts B.M., Fischer D.G., Gehring C.A., Lindroth R.L., Marks J.C., Hart S.C., Wimp G.M., Wooley S.C. A framework for community and ecosystem genetics: from genes to ecosystems, Nature Rev. Genet., 2006, 7, 510-523.

  • [188] Rudman S.M., Rodriguez-Cabal M.A., Stier A., Sato, T., Heavyside J., El-Sabaawi R.W., Crutsinger G.M., Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem, Proc. R. Soc. London B, 2015, 282, 125-132.

  • [189] Perkin E.K., Hoelker F., Tockner K., Richardson J.S., Artificial light as a disturbance to light‐naïve streams, Freshwater Biol., 2014, 59, 2235-2244.

  • [190] Perkin E.K., Hoelker F., Richardson J.S., Sadler J.P., Wolter C., Tockner K., The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives, Ecosphere, 2011, 2, 122.

  • [191] Meyer L.A., Sullivan S.M.P., Bright lights, big city: Influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes, Ecol. Applicat., 2013, 23, 1322-1330.

  • [192] Allen D.C., Wesner J.S., Synthesis: Comparing effects of resource and consumer fluxes into recipient food webs using meta-analysis, Ecology, 2016, in press.

  • [193] Massol F., Gravel D., Mouquet N., Cadotte M.W., Fukami T., Leibold M.A., Linking community and ecosystem dynamics through spatial ecology, Ecol. Lett., 2011, 14, 313-323.

OPEN ACCESS

Journal + Issues

Riparian Ecology and Conservation helps to exchange information on riparian science and policy by focusing on riparian ecology, conservation, ecological restoration, hydrology, geomorphology, sedimentation and management. It publishes empirical or theoretical studies that cross disciplines such ecology, geology, social science, ecological economics, conservation and management.

Search