Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 4, 2020

Investigation of effective parameters on SAPO-34 nanocatalyst in the methanol-to-olefin conversion process: a review

  • Zhidong Yang , Liehui Zhang , Yuhui Zhou EMAIL logo , Hui Wang , Lichen Wen and Ehsan Kianfar ORCID logo EMAIL logo

Abstract

Light olefins such as ethylene, propylene and butylene are mainly used in the petrochemical industry. Due to the growing need for light olefins in the industry and the future shortage of petroleum resources, the process of converting methanol to olefins (MTO) using non-oil sources has been considered as an alternative. Coal and natural gas are abundant in nature and the methods of converting them to methanol are well known today. Coal gasification or steam reforming of natural gas to produce synthetic gas (CO and hydrogen gas) can lead to methanol production. Methanol can also be catalytically converted to gasoline or olefins depending on the effective process and catalyst factors used. Due to the use of crude methanol in the MTO unit and because the feed does not require primary distillation, if the MTO unit is installed alongside the methanol unit, its capital costs will be reduced. The use of methanol can have advantages such as easier and less expensive transportation than ethane. Among the available catalysts, SAPO-34 is the most suitable catalyst for this process due to its small cavities and medium acidity. One of the problems of MTO units is the rapid deactivation of SAPO-34, which can also be affected by the synthesis factors, so it is possible to optimize the catalyst performance by modifying the synthesis conditions. In this article, we will introduce the MTO process and the factors affecting the production of light olefins.

Acknowledgments

The authors gratefully acknowledge the Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran and Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran.

  1. Funding: There is no funding to report for this submission.

  2. Conflict of interest: The authors declare that they have no conflict of interest.

References

Alvaro-Munoz, T.; Marquez-Alvarez, C.; Sastre, E. Use of different templates on SAPO-34 synthesis: effect on the acidity and catalytic activity in the MTO reaction. Catal. Today2012, 179, 27–34.10.1016/j.cattod.2011.07.038Search in Google Scholar

Alvaro-Munoz, T.; Marquez-Alvarez, C.; Sastre, E. Aluminium chloride: a new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process. Appl. Catal. A: General2014, 472, 72–79.10.1016/j.apcata.2013.12.016Search in Google Scholar

Alwahabi, S. Conversion of methanol to light olefins on SAPO-34 kinetic modeling and reactor design. PhD Thesis, Texas A&M University: USA, 2003.Search in Google Scholar

Bjørgen, M.; Joensen, F.; Holm, M.S.; Olsbye, U.; Lillerud, K-P.; Svelle, S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Appl. Catal. A: General2008, 345, 43–50.10.1016/j.apcata.2008.04.020Search in Google Scholar

Bleken, F.L.; Chavan, S.; Olsbye, U.; Boltz, M.; Ocampo, F.; Louis, B. Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity. Appl. Catal. A: General2012, 447–448, 178–185.10.1016/j.apcata.2012.09.025Search in Google Scholar

Casady, J.B.; Johnson, R.W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron.1996, 39, 1409–1422.10.1016/0038-1101(96)00045-7Search in Google Scholar

Chaida-Chenni, F.Z.; Belhadj, F.; Casas, M.S.G.; Márquez-Álvarez, C.; Hamacha, R.; Bengueddach, A.; Pérez-Pariente, J. Synthesis of mesoporous-zeolite materials using Beta zeolite nanoparticles as precursors and their catalytic performance in m-xylene isomerization and disproportionation. Appl. Catal. A: General2018, 568, 148–156.10.1016/j.apcata.2018.10.005Search in Google Scholar

Chang, C.D.; Lang, W.H.; Smith, R.L. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. Pressure effects. J. Catal.1979, 56, 169–173.10.1016/0021-9517(79)90103-9Search in Google Scholar

Chen, J.Q.; Bozzano, A.; Glover, B.; Fuglerud, T.; Kvisle, S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal. Today2005, 106, 103–107.10.1016/j.cattod.2005.07.178Search in Google Scholar

Chen, H.; Wang, M.; Yang, M.; Shang, W.; Yang, C.; Liu, B.; Hao, Q.; Zhang, J.; Ma, X. Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance. J. Mater. Sci.2019, 54, 8202–8215.10.1007/s10853-019-03485-wSearch in Google Scholar

Cola, P.L.D.; Glaser, R.; Weitkamp, J. Non-oxidative propane dehydrogenation over Pt–Zn-containing zeolites. Appl. Catal. A2006, 306, 85–97.10.1016/j.apcata.2006.03.028Search in Google Scholar

Coluccia, S.; Marchese, L.; Martra, G. Characterisation of microporous and mesoporous materials by the adsorption of molecular probes: FTIR and UV–Vis studies. Micropor. Mesopor. Mater.1999, 30, 43.10.1016/S1387-1811(99)00019-0Search in Google Scholar

Comelli, R.A.; Figoli, N.S. Effect of pressure on the transformation of methanol into hydrocarbons on an amorphous silica-alumina. Appl. Catal.1991, 73, 185–194.10.1016/0166-9834(91)85136-JSearch in Google Scholar

Cornell, J.A. How to Apply Response Surface Methodology. American Society for Quality Control: Wisconsin, 1990.Search in Google Scholar

Dahl, I.M. On the reaction mechanism for propen formation in the MTO reaction over SAPO-34. Catal. Lett.1993, 20, 329–336.10.1007/BF00769305Search in Google Scholar

Dahl, I.M.; Kolboe, M. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-3. J. Catal. Lett.1993, 20, 329–336.10.1007/BF00769305Search in Google Scholar

Dahl, I.M.; Mostad, H.; Akporiaye, D.; Wendelbo, R. Structural and chemical influences on the MTO reaction: a comparison of chabazite and SAPO-34 as MTO catalysts. Micropor. Mesopor. Mat. 1999, 29, 185–190.10.1016/S1387-1811(98)00330-8Search in Google Scholar

Dargahia, M.; Kazemianb, H.; Soltanieh, M.; Rohanib, S.; Hosseinpour, M. Rapid high-temperature synthesis of SAPO-34 nanoparticles. Particuology2011, 9, 452–457.10.1016/j.partic.2011.03.007Search in Google Scholar

Demuth, D.; Stucky, G.D.; Unger, K.K.; Schuth, F. Synthesis of large optically clear silicoaluminophosphate crystals with AFI structure. Micropor. Mater. 1995, 3, 473–487.10.1016/0927-6513(94)00060-9Search in Google Scholar

Djieugoue M.A.; Prakash A.M.; Kevan L. Electron spin resonance and electron spin-echo modulation studies of synthesized NiAPSO-34 molecular SIEVE and comparison with ion-exchanged NiH-SAPO-34 molecular sieve. J. Phys. Chem. B1999, 103, 804–811.10.1021/jp9823897Search in Google Scholar

Dubois, D.R.; Obrzut, D.L.; Liu, J.; Thundimadathil, J.; Adekkanattu, P.M.; Guin, J.A.; Punnoose, A.; Seehra, M.S. Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves. Fuel Process. Technol.2003, 83, 203–218.10.1016/S0378-3820(03)00069-9Search in Google Scholar

Dyballa, M.; Obenaus, U.; Rosenberger, M.; Fischer, A.; Jakob, H.; Klemm, E.; Hunger, M. Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion. Micropor. Mesopor. Mat.2016, 233, 26–30.10.1016/j.micromeso.2016.06.044Search in Google Scholar

Echevskii, G.V.; Ione, K.G.; Nosyreva, G.N.; Litvak, G.S. Effect of the temperature regime of methanol conversion to hydrocarbons on coking of zeolite catalysts and their regeneration. Appl. Catal.1988, 43, 85–89.10.1016/S0166-9834(00)80902-1Search in Google Scholar

Emrani, P.; Fatemi, S.; Talesh, S.A. Effect of synthesis parameters on phase purity, crystallinity and particle size of SAPO-34. Iran. J. Chem. Chem. Eng. 2011, 30, 29–36.Search in Google Scholar

Epelde, E.; Ibáñez, M.; Valecillos, J.; Aguayo, A.T.; Gayubo, A.G.; Bilbao, J.; Castaño, P. SAPO-18 and SAPO-34 catalysts for propylene production from the oligomerization-cracking of ethylene or 1-butene. Appl. Catal. A: General2017, 547, 176–182.10.1016/j.apcata.2017.08.036Search in Google Scholar

Fatourehchi, N; Sohrabi, M.; Royaee, S.J.; Mirarefin, S.M. Preparation of SAPO-34 catalyst and presentation of a kinetic model for methanol to olefin process (MTO). Chem. Eng. Res. Des. 2011, 89, 811–816.10.1016/j.cherd.2010.10.007Search in Google Scholar

Froment, G.F.; Dehertog, W.J.H.; Marchi, A.J. Zeolite catalysis in the conversion of methanol into olefins. Catalysis1992, 9, 1–64.10.1039/9781847553218-00001Search in Google Scholar

Girnus, I.; Jancke, K.; Vetter, R.; Richter-Mendau, J.; Caro, J. Large ALPO4-5 crystals by microwave heating. Zeolites1995, 15, 33–39.10.1016/0144-2449(94)00004-CSearch in Google Scholar

Guangyu, L.; Peng, T.; Zhongmin, L. Synthesis of SAPO-34 molecular sieves templated with diethylamine and their properties compared with other templates. Chinese J. Catal. 2012, 33, 174–182.10.1016/S1872-2067(10)60325-2Search in Google Scholar

Guo, G.; Sun, Q.; Wang, N.; Bai, R.; Yu, J. Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance. Chem. Commun.2018, 54, 3697–3700.10.1039/C8CC00326BSearch in Google Scholar PubMed

Hajfarajollah, H.; Askari, S.; Halladj, R. Effects of micro and nano-sized SAPO-34 and SAPO-5 catalysts on the conversion of methanol to light olefins. React. Kinet. Mech. Cat. 2014, 111, 723–736.10.1007/s11144-013-0650-6Search in Google Scholar

Hajiashrafi, T.; Kharat, A.N. Study of preparation methods and their effect on the morphology and texture of SAPO-34 for the methanol to olefin reaction. React. Kinet. Mech. Cat. 2013, 108, 417–432.10.1007/s11144-012-0520-7Search in Google Scholar

Hang, Y.; Qu, M.; Ukkusuri, S. Optimizing the design of a solar cooling system using central composite design techniques. Energ Buildings2011, 43, 988–994.10.1016/j.enbuild.2010.12.024Search in Google Scholar

Heyden, H.V.; Mintova, S.; Bein, T. Nanosized SAPO-34 synthesized from colloidal solutions. Chem. Mater. (ACS Publications)2008, 20, 2956–2963.10.1021/cm703541wSearch in Google Scholar

Hirota, Y.; Murata, K.; Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Dry gel conversion synthesis of SAPO-34 nanocrystals. Mater. Chem. Phys.2010, 123, 507–509.10.1016/j.matchemphys.2010.05.005Search in Google Scholar

Hochtl, M.; Jentys, A.; Vinek, H. Isomerization of 1-pentene over SAPO, CoAPO (AEL, AFI) molecular sieves and HZSM-5. Appl. Catal. A: General2001, 207, 397–405.10.1016/S0926-860X(00)00682-7Search in Google Scholar

http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/6-apps/6-5-2_coal-to-derivative.html, 2011.Search in Google Scholar

http://www.uop.com/mto-process-flow-scheme, 2011.Search in Google Scholar

Inui, T.; Kang, M. Reliable procedure for the synthesis of Ni-SAPO-34 as highly selective catalyst for methanol to ethylene conversion. Appl. Catal. A1997, 164, 211–223.10.1016/S0926-860X(97)00172-5Search in Google Scholar

Izadbakhsh, A.; Farhadi, F.; Khorasheh, F.; Sahebdelfar, S.; Asadi, M.; Feng, Y.Z. Effect of SAPO-34’s composition on its physico-chemical properties and deactivation in MTO process. Appl. Catal. A, 2009a, 364, 48–56.10.1016/j.apcata.2009.05.022Search in Google Scholar

Izadbakhsh, A.; Farhadi, F.; Khorasheh, F.; Sahebdelfar, S.; Asadi, M.; Yan, Z.F. Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve. Micropor. Mesopor. Mat. 2009b, 126, 1–7.10.1016/j.micromeso.2008.12.009Search in Google Scholar

Jean, L. Effect of process parameters on methanol to olefins reactions over SAPO catalysts. Master’s Thesis, Auburn University: Alabama, 2005.Search in Google Scholar

Kianfara, E. Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ. J. Appl. Chem. 2018, 91, 1710–1720.10.1134/S1070427218100208Search in Google Scholar

Kianfar, E.; Salimi, M.; Pirouzfar, V.; Koohestani, B. Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. Int. J. Chem. React. Eng.2018a, 16, 1–7.10.1515/ijcre-2017-0229Search in Google Scholar

Kianfar, E.; Salimi, M.; Pirouzfar, V.; Koohestani, B. Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int. J. Appl. Ceram. Technol.2018b, 15, 734–741.10.1111/ijac.12830Search in Google Scholar

Kianfar, E. Comparison and assessment of Zeolite Catalysts performance Dimethyl ether and light olefins production through methanol: a review. Rev. Inorg. Chem.2019a, 39, 157–177.10.1515/revic-2019-0001Search in Google Scholar

Kianfar, E. Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst synthesize. Russ. J. Appl. Chem. 2019b, 92, 1094–1101.10.1134/S1070427219080068Search in Google Scholar

Kianfar, E. Ethylene to propylene over zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ. J. Appl. Chem. 2019c, 92, 933−939.10.1134/S1070427219070085Search in Google Scholar

Kianfar, E. Recent advances in synthesized, properties, applications of nano-zeolites. J. Sol-Gel Sci. Technol. 2019d, 91, 415–429.10.1007/s10971-019-05012-4Search in Google Scholar

Kianfar, E.; Salimi, M.; Hajimirzaee, S.; Koohestani, B. Methanol to gasoline conversion over CuO/ZSM 5 catalyst synthesized using sonochemistry method. Int. J. Chem. React. Eng. 2019, 17, 1–10.10.1515/ijcre-2018-0127Search in Google Scholar

Lee, Y.J.; Baek, S.C.; Jun, K.W. Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Appl. Catal. A: General2007, 329, 130–136.10.1016/j.apcata.2007.06.034Search in Google Scholar

Lee, K.Y.; Chae, H-J.; Jeong, S-Y.; Seo, G. Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Appl. Catal. A: General2009, 369, 60–66.10.1016/j.apcata.2009.08.033Search in Google Scholar

Lei, W.; Ziyu, L.; Lin, X.; Minghuang, Q.; Xu, L.; Haojia, Z.; Yuhan, S. Effect of SAPO-34 molecular sieve morphology on methanol to olefins performance. Chinese J. Catal.2013, 34, 1348–1356.10.1016/S1872-2067(12)60575-0Search in Google Scholar

Li, L.; Cui, X.; Lia, J.; Wang, J. Synthesis of SAPO-34/ZSM-5 composite and its catalytic performance in the conversion of methanol to hydrocarbons. J. Braz. Chem. Soc.2015, 26, 290–296.Search in Google Scholar

Li, H.; Wang, Y.; Fan, C.; Sun, C.; Wang, X.; Wang, C.; Zhang, X.; Wang, S. Facile synthesis of a superior MTP catalyst: hierarchical micro-meso-macroporous ZSM-5 zeolites. Appl. Catal. A: General2018, 551, 34–48.10.1016/j.apcata.2017.12.007Search in Google Scholar

Lin, S.; Li, J.; Sharma, R.P.; Yu, J.; Xu, R. Fabrication of SAPO-34 crystals with different morphologies by microwave heating. Top. Catal.2010, 53, 1304–1310.10.1007/s11244-010-9588-3Search in Google Scholar

Liu, L.; Tobias, R.G.; Mclaughlin, K.; Anthony, R.G. Conversion of Methanol to Low Molecular Weight Olefins with Heterogeneous Catalysts. In Catalytic Conversion of Synthesis Gas and Alcohols to Chemicals. Herman, R.G., Ed. Plenum Press: New York, 1984, pp. 323–360.10.1007/978-1-4613-2737-0_18Search in Google Scholar

Liu, G.; Tian, P.; Li, J.; Zhang, D.; Zhou, F.; Liu, Z. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Micropor. Mesopor. Mat. 2008, 111, 143–149.10.1016/j.micromeso.2007.07.023Search in Google Scholar

Lok, B.M.; Messina, C.A.; Patton, R.L.; Gajek, R.T.; Cannan, T.R.; Flanigen, E.M. Crystalline silicialuminophosphates. US Patent 4,440,871 B01J, Union Carbide Corporation, Danbury, Conn, 1984.Search in Google Scholar

Marchi, A.J.; Froment, G.F. Catalytic conversion of methanol to light alkenes on SAPO molecular sieves. Appl. Catal.1991, 71, 139.10.1016/0166-9834(91)85011-JSearch in Google Scholar

Martín, N.; Li, Z.; Martínez-Triguero, J.; Yu, J.; Moliner, M.; Corma, A. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chem. Commun.2016, 52, 6072–6075.10.1039/C5CC09719CSearch in Google Scholar

Mousavi, S.H.; Fatemi, S.; Razavian, M. Synthesis and stability evaluation of hierarchical silicoaluminophosphates with different structural frameworks in the methanol to olefins process. Particuology2018, 37, 43–53.10.1016/j.partic.2017.06.004Search in Google Scholar

Nishiyama, N.; Kawaguchi, M.; Hirota, Y.; Vu, D.V.; Egashira, Y.; Ueyama, K. Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl. Catal. A: General2009, 362, 193–199.10.1016/j.apcata.2009.04.044Search in Google Scholar

Park, T.Y.; Froment, G. Kinetic modeling of the methanol to olefins process. 2. Experimental results, model discrimination, and parameter estimation. Ind. Eng. Chem. Res. 2001, 40, 4187–4196.10.1021/ie000854sSearch in Google Scholar

Park, J.Y.; Lee, Y.J.; Jun, K.W.; Bae, J.W.; Viswanadham, N.; Kim, Y.H. Direct conversion of synthesis gas to light olefins using dual bed reactor. J. Ind. Eng. Chem. 2009, 15, 847–853.10.1016/j.jiec.2009.09.011Search in Google Scholar

Pastore, H.O.; Coluccia, S.; Marchese, L. Porous aluminophosphates: from molecular sieves to designed acid catalysts. First published online as a Review in Advance 2005, 35, 351–395.Search in Google Scholar

Popova, M.; Minchev, C.; Kanazirev, V. Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminium. Appl. Catal. A: General1998, 169, 227–235.10.1016/S0926-860X(98)00003-9Search in Google Scholar

Rami, M.D.; Taghizadeh, M.; Akhoundzadeh, H. Synthesis and characterization of nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: special insight on the influence of TX-100 as a cheap and green surfactant. Micropor. Mesopor. Mat. 2019, 285, 259–270.10.1016/j.micromeso.2019.05.028Search in Google Scholar

Rostamizadeh, M.; Yaripour, F.; Hazrati, H. Selective production of light olefins from methanol over desilicated highly siliceous ZSM-5 nanocatalysts. Polyolefins J. 2018, 5, 59–70.Search in Google Scholar

Salmasi, M; Fatemi, S; Najafabadi, A.T. Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J. Ind. Eng. Chem.2011, 17, 755–761.10.1016/j.jiec.2011.05.031Search in Google Scholar

Sastre, G.; Lewis, D.W.; Catlow, C.R.A. Modeling of silicon substituition in SAPO-5 and SAPO-34 molecular sieves. J. Phys. Chem. B1997, 101, 5252–5262.Search in Google Scholar

Shen, W.; Li, X.; Wei, Y.; Tian, P.; Deng, F.; Han, X.; Bao, X. A study of the acidity of SAPO-34 by solid-state NMR spectroscopy. Micropor. Mesopor. Mat. 2012, 158, 19–25.10.1016/j.micromeso.2012.03.013Search in Google Scholar

Shirazi, L.; Gangji, E.; Taheri, Z. The effect of H-SAPO-34 template type on conversion of methanol to light olefins. J. Oil Res.2011, 21, 44–53.Search in Google Scholar

Sun, Q.; Wang, N.; Xi, D.; Yang, M.; Yu, J. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem. Commun. 2014, 50, 6502–6505.10.1039/c4cc02050bSearch in Google Scholar

Sun, Q.; Xie, Z.; Yu, J. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl. Sci. Rev. 2018, 5, 542–558.10.1093/nsr/nwx103Search in Google Scholar

Tan, J.; Liu, Z.; Bao, X.; Liu, X.; Han, X.; He, C.; Zhai, R. Crystallization and Si incorporation mechanisms of SAPO-34. Micropor. Mesopor. Mat.2002, 53, 97–108.10.1016/S1387-1811(02)00329-3Search in Google Scholar

Topuz, B.; Oral, E.; Kalipcilar, H. Low temperature synthesis of SAPO-34 in a recirculating-flow system. J. Porous Mater.2013, 20, 1491–1500.10.1007/s10934-013-9735-xSearch in Google Scholar

Utchariyajit, K.; Wongkasemjit, S. Effect of synthesis parameters on mesoporous SAPO-5 with AFI-type formation via microwave radiation using alumatrane and silatrane precursors. Micropor. Mesopor. Mater.2010, 135, 116–123.10.1016/j.micromeso.2010.06.018Search in Google Scholar

Valizadeh, B.; Askari, S.; Halladj, R.; Haghmoradi, A. Effect of synthesis conditions on selective formation of SAPO-5 and SAPO-34. Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 2014, 44, 79–83.10.1080/15533174.2013.768646Search in Google Scholar

Wang, J.; Yu, T.; Wang, X.; Qi, G.; Xue, J.; Shen, M.; Li, W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR. Appl. Catal. B: Environ. 2012a, 127, 137–147.10.1016/j.apcatb.2012.08.016Search in Google Scholar

Wang, P.; Lv, A.; Hu, J.; Xu, J.; Lu, G. The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Micropor. Mesopor. Mat. 2012b, 152, 178–184.10.1016/j.micromeso.2011.11.037Search in Google Scholar

Wang, P.; Yang, D.; Hub, J.; Xu, J.; Lu, G. Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction. Catal. Today2013, 212, 62.e1–62.e8.10.1016/j.cattod.2012.08.027Search in Google Scholar

Wang, C.; Yang, M.; Tian, P.; Xu, S.; Yang, Y.; Wang, D.; Yuan, Y.; Liu, Z. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J. Mater. Chem. A2015, 3, 5608–5616.10.1039/C4TA06124ASearch in Google Scholar

Wang, C.; Yang, M.; Zhang, W.; Su, X.; Xu, S.; Tian, P.; Liu, Z. Organophosphorous surfactant-assistant synthesis of SAPO-34 molecular sieve with special morphology and improved MTO performance. RSC Adv.2016, 6, 47864–47872.10.1039/C6RA06428KSearch in Google Scholar

Wang, X.; Ali, S.; Yuan, F.; Li, Z.; Zhu, Y. CTAB-assisted size controlled synthesis of SAPO-34 and its contribution toward MTO performance. Dalton Trans.2018, 47, 9861–9870.10.1039/C8DT01811ASearch in Google Scholar

Wei, Y.X.; Zhang, D.Z.; He, Y.L.; Xu, L.; Yang, Y.; Su, B.L.; Liu, Z.M. Catalytic performance of chloromethane transformation for light olefins production over SAPO-34 with different Si content. Catal. Lett.2007, 114, 30.10.1007/s10562-007-9038-4Search in Google Scholar

Wilson, S.T. Synthesis of SAPO-34 with essentially pure CHA framework. US Patent 7578987 B2, 2009Uop Llc.Search in Google Scholar

Wilson, S.; Barger, P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Micropor. Mesopor. Mat. 1999, 29, 117–126.10.1016/S1387-1811(98)00325-4Search in Google Scholar

Wu, X.; Anthony, R.G. Effect of feed composition on methanol conversion to light olefins over SAPO-34. J. Catal.2001, 218, 241–250.10.1016/S0926-860X(01)00651-2Search in Google Scholar

Wu, P.; Yang, M.; Zhang, W.; Xu, S.; Guo, P.; Tian, P.; Liu, Z. Synthesis of SAPO-34 nanoaggregates with the assistance of an inexpensive three-in-one non-surfactant organosilane. Chem. Commun. 2017, 53, 4985–4988.10.1039/C7CC01834GSearch in Google Scholar PubMed

Xu, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J. Synthetic Chemistry of Microporous Compounds (I) – Fundamentals and Synthetic Routes, Chapter 3. In Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. John Wiley and Sons: Hoboken, NJ, USA, 2006, pp. 52.Search in Google Scholar

Xu, L.; Du, A.; Wei, Y.; Wang, Y.; Yu, Z.; He, Y.; Zhang, X.; Liu, Z. Synthesis of SAPO-34 with only Si(4Al) species: effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34. Micropor. Mesopor. Mat. 2008, 115, 332–337.10.1016/j.micromeso.2008.02.001Search in Google Scholar

Yang, G.; Wei, Y.; Xu, S.; Chen, J.; Li, J.; Liu, Z.; Yu, J.; Xu, R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J. Phys. Chem. C2013, 117, 8214−8222.10.1021/jp312857pSearch in Google Scholar

Yu, Y.; Qin, J.; Xiao, M.; Wang, S.; Han, D.; Meng, Y. Performance enhanced SAPO-34 catalyst for methanol to olefins: template synthesis using a CO2-based polyurea. Catalysts2019, 9, 16.10.3390/catal9010016Search in Google Scholar

Zaidi, H.A.; Pant, K.K. Catalytic activity of copper oxide impregnated HZSM-5 in methanol conversion to liquid hydrocarbons. Can. J. Chem. Eng.2005, 83, 970–977.10.1002/cjce.5450830606Search in Google Scholar

Zibrowius, B.; Loffler, E.; Hunger, M. Multinuclear, MAS n. m. r. and i. r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites1992, 12, 167–174.10.1016/0144-2449(92)90079-5Search in Google Scholar

Zubkov, S.A.; Kustov, L.M.; Kazansky, V.B. Investigation of hydroxyl groups in crystalline silicoaluminophosphate SAPO-34 by diffuse reflectance infrared spectroscopy. J. Chem. Soc. Faraday Trans. 1991, 87, 897–900.10.1039/ft9918700897Search in Google Scholar

Received: 2020-02-11
Accepted: 2020-05-25
Published Online: 2020-07-04
Published in Print: 2020-09-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2020-0003/html
Scroll to top button