Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 3, 2020

Neurophysiologic implications of neuronal nitric oxide synthase

  • Masoumeh Kourosh-Arami EMAIL logo , Nasrin Hosseini , Monireh Mohsenzadegan , Alireza Komaki and Mohammad Taghi Joghataei

Abstract

The molecular and chemical properties of neuronal nitric oxide synthase (nNOS) have made it a key mediator in many physiological functions and signaling transduction. The NOS monomer is inactive, but the dimer form is active. There are three forms of NOS, which are neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) nitric oxide synthase. nNOS regulates nitric oxide (NO) synthesis which is the mechanism used mostly by neurons to produce NO. nNOS expression and activation is regulated by some important signaling proteins, such as cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), calmodulin (CaM), heat shock protein 90 (HSP90)/HSP70. nNOS-derived NO has been implicated in modulating many physiological functions, such as synaptic plasticity, learning, memory, neurogenesis, etc. In this review, we have summarized recent studies that have characterized structural features, subcellular localization, and factors that regulate nNOS function. Finally, we have discussed the role of nNOS in the developing brain under a wide range of physiological conditions, especially long-term potentiation and depression.


Corresponding author: Masoumeh Kourosh-Arami, Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran, E-mail:

Funding source: Cognitive Sciences and Technologies Council

Acknowledgment

The authors thank the Cognitive Sciences and Technologies Council for supporting this study.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflicts of interest statement: The authors declare no conflict of interest.

References

Alagarsamy, S., Lonart, G. and Johnson, K. M. (1994). Rapid communication: the role of P‐type calcium channels in the depolarization‐induced activation of nitric oxide synthase in frontal cortex. J. Neurochem. 62: 400–403. https://doi.org/10.1046/j.1471-4159.1994.62010400.x.10.1046/j.1471-4159.1994.62010400.xSearch in Google Scholar

Alderton, W. K., Cooper, C. E. and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357: 593–615. https://doi.org/10.1042/bj3570593.10.1042/bj3570593Search in Google Scholar

Andrew, P. J. and Mayer, B. (1999). Enzymatic function of nitric oxide synthases. Cardiovasc. Res. 43: 521–531. https://doi.org/10.1016/S0008-6363(99)00115-7.10.1016/S0008-6363(99)00115-7Search in Google Scholar

Arami, M. K. (2015). Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia. Iranian J. Basic Med. Sci. 18: 989. https://doi.org/10.22038/IJBMS.2015.5462.Search in Google Scholar

Arami, M. K., Hajizadeh, S. and Semnanian, S. (2016). Postnatal development changes in excitatory synaptic activity in the rat locus coeruleus neurons. Brain Res. 1648: 365–371. https://doi.org/10.1016/j.brainres.2016.07.036.10.1016/j.brainres.2016.07.036Search in Google Scholar PubMed

Arami, K. M., Jameie, B. and Moosavi, S.A. (2017). Neuronal nitric oxide synthase. In: Nitric oxide synthase: simple enzyme-complex roles, 1. Intechopen, https://doi.org/10.5772/67494.10.5772/67494Search in Google Scholar

Arami, M. K., Sohya, K., Sarihi, A., Jiang, B., Yanagawa, Y. and Tsumoto, T. (2013). Reciprocal homosynaptic and heterosynaptic long-term plasticity of corticogeniculate projection neurons in layer VI of the mouse visual cortex. J. Neurosci. 33: 7787–7798. https://doi.org/10.1523/JNEUROSCI.5350-12.2013.10.1523/JNEUROSCI.5350-12.2013Search in Google Scholar PubMed PubMed Central

Babasafari, M., Kourosharami, M., Behman, J., Farhadi, M. and Komaki, A. (2019). Alteration of phospholipase C expression in rat visual cortical neurons by chronic blockade of orexin receptor 1. Int. J. Pept. Res. Therap 1–7. https://doi.org/10.1007/s10989-019-09943-y.10.1007/s10989-019-09943-ySearch in Google Scholar

Barkhuizen, M., Van de Berg, W., De Vente, J., Blanco, C., Gavilanes, A. and Steinbusch, H. (2017). Nitric oxide production in the striatum and cerebellum of a rat model of preterm global perinatal asphyxia. Neurotox. Res. 31: 400–409. https://doi.org/10.1007/s12640-017-9700-6.10.1007/s12640-017-9700-6Search in Google Scholar PubMed PubMed Central

Barnabé-Heider, F. and Miller, F. D (2003). Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23: 5149–5160. https://doi.org/10.1523/JNEUROSCI.23-12-05149.2003.10.1523/JNEUROSCI.23-12-05149.2003Search in Google Scholar

Bernatova, I. (2014). Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? BioMed Res. Int. 2014. https://doi.org/10.1155/2014/598271.10.1155/2014/598271Search in Google Scholar PubMed PubMed Central

Bliss, T. V. and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31. https://doi.org/10.1038/361031a0.10.1038/361031a0Search in Google Scholar

Boeckxstaens, G., De Man, J., Pelckmans, P., Herman, A. and Van Maercke, Y. (1993). α2‐Adrenoceptor‐mediated modulation of the nitrergic innervation of the canine isolated ileocolonic junction. Br. J. Pharmacol. 109: 1079–1084. https://doi.org/10.1111/j.1476-5381.1993.tb13732.x.10.1111/j.1476-5381.1993.tb13732.xSearch in Google Scholar

Bon, C. L. and Garthwaite, J. (2003). On the role of nitric oxide in hippocampal long-term potentiation. J. Neurosci. 23: 1941–1948. https://doi.org/10.1523/JNEUROSCI.23-05-01941.2003.10.1523/JNEUROSCI.23-05-01941.2003Search in Google Scholar

Bredt, D. S. (1999). Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res. 31: 577–596. https://doi.org/10.1080/10715769900301161.10.1080/10715769900301161Search in Google Scholar

Bredt, D. S., Ferris, C. D. and Snyder, S. H. (1992). Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J. Biol. Chem. 267: 10976–10981.10.1016/S0021-9258(19)49862-1Search in Google Scholar

Bredt, D. S. and Snyder, S. H. (1990). Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Nat. Acad. Sci. 87: 682–685. https://doi.org/10.1073/pnas.87.2.682.10.1073/pnas.87.2.682Search in Google Scholar

Bredt, D. S. and Snyder, S. H. (1994). Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron 13: 301–313. https://doi.org/10.1016/0896-6273(94)90348-4.10.1016/0896-6273(94)90348-4Search in Google Scholar

Brenman, J. E. and Bredt, D.S. (1997). Synaptic signaling by nitric oxide. Curr. Opin. Neurobiol. 7: 374–378. https://doi.org/10.1016/S0959-4388(97)80065-7.10.1016/S0959-4388(97)80065-7Search in Google Scholar

Brenman, J. E., Chao, D.S., Gee, S.H., McGee, A. W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, F., Xia, H. and Peters, M. F. (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell 84: 757–767. https://doi.org/10.1016/S0092-8674(00)81053-3.10.1016/S0092-8674(00)81053-3Search in Google Scholar

Brüne, B. and Lapetina, E. G. (1991). Phosphorylation of nitric oxide synthase by protein kinase A. Biochem. Biophys. Res. Commun. 181: 921–926. https://doi.org/10.1016/0006-291X(91)91279-L.10.1016/0006-291X(91)91279-LSearch in Google Scholar

Cao, J., Viholainen, J. I., Dart, C., Warwick, H. K., Leyland, M. L. and Courtney, M. J. (2005). The PSD95–nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J. Cell Biol. 168: 117–126. https://doi.org/10.1083/jcb.200407024.10.1083/jcb.200407024Search in Google Scholar PubMed PubMed Central

Castillo, P. E. (2012). Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb. Perspect. Biol. 4: a005728. https://doi.org/10.1101/cshperspect.a005728.10.1101/cshperspect.a005728Search in Google Scholar PubMed PubMed Central

Catania, M.V., Aronica, E., Yankaya, B. and Troost, D. (2001). Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J. Neurosci. 21: RC148–RC148. https://doi.org/10.1523/JNEUROSCI.21-11-j0002.2001.10.1523/JNEUROSCI.21-11-j0002.2001Search in Google Scholar

Cauli, B., Tong, X.-K., Rancillac, A., Serluca, N., Lambolez, B., Rossier, J. and Hamel, E. (2004). Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24: 8940–8949. https://doi.org/10.1523/JNEUROSCI.3065-04.2004.10.1523/JNEUROSCI.3065-04.2004Search in Google Scholar PubMed PubMed Central

Caviedes, A., Varas-Godoy, M., Lafourcade, C., Sandoval, S., Bravo-Alegria, J., Kaehne, T., Massmann, A., Figueroa, J. P., Nualart, F. and Wyneken, U. (2017). Endothelial nitric oxide synthase is present in dendritic spines of neurons in primary cultures. Front. Cell. Neurosci. 11: 180. https://doi.org/10.3389/fncel.2017.00180.10.3389/fncel.2017.00180Search in Google Scholar PubMed PubMed Central

Chanrion, B., La Cour, C. M., Bertaso, F., Lerner-Natoli, M., Freissmuth, M., Millan, M., Bockaert, J. and Marin, P. (2007). Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc. Nat. Acad. Sci. 104: 8119–8124. https://doi.org/10.1073/pnas.0610964104.10.1073/pnas.0610964104Search in Google Scholar PubMed PubMed Central

Cheah, J. H., Kim, S. F., Hester, L. D., Clancy, K. W, Patterson, S. E.III, Papadopoulos, V. and Snyder, S. H. (2006). NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51: 431–440. https://doi.org/10.1016/j.neuron.2006.07.011.10.1016/j.neuron.2006.07.011Search in Google Scholar PubMed PubMed Central

Chen, Y., Khan, R. S., Cwanger, A., Song, Y., Steenstra, C., Bang, S., Cheah, J. H., Dunaief, J., Shindler, K. S. and Snyder, S. H. (2013). Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity. J. Neurosci. 33: 3582–3587. https://doi.org/10.1523/JNEUROSCI.1497-12.2013.10.1523/JNEUROSCI.1497-12.2013Search in Google Scholar PubMed PubMed Central

Cheung, A., Newland, P. L., Zaben, M., Attard, G. S., Gray, W. P. (2012). Intracellular nitric oxide mediates neuroproliferative effect of neuropeptide y on postnatal hippocampal precursor cells. J. Biol. Chem. 287: 20187–20196. https://doi.org/10.1074/jbc.M112.346783.10.1074/jbc.M112.346783Search in Google Scholar PubMed PubMed Central

Cho, K.-H., Jang, J. H., Jang, H.-J., Kim, M.-J., Yoon, S. H., Fukuda, T., Tennigkeit, F., Singer, W. and Rhie, D.-J. (2010). Subtype-specific dendritic Ca2+ dynamics of inhibitory interneurons in the rat visual cortex. J. Neurophys. 104: 840–853. https://doi.org/10.1152/jn.00146.2010.10.1152/jn.00146.2010Search in Google Scholar PubMed

Choi, Y.-B., Tenneti, L., Le, D. A., Ortiz, J., Bai, G., Chen, H.-S. V. and Lipton, S. A. (2000). Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat. Neurosci. 3: 15. https://doi.org/10.1038/71090.10.1038/71090Search in Google Scholar

Codocedo, J. F., Godoy, J. A., Poblete, M. I., Inestrosa, N. C. and Huidobro-Toro, J. P. (2013). ATP induces NO production in hippocampal neurons by P2X7 receptor activation independent of glutamate signaling. PLoS One 8: e57626. https://doi.org/10.1371/journal.pone.0057626.10.1371/journal.pone.0057626Search in Google Scholar

Costa, E. D., Rezende, B. A., Cortes, S. F. and Lemos, V. S. (2016). Neuronal nitric oxide synthase in vascular physiology and diseases. Front. physiology 7: 206. https://doi.org/10.3389/fphys.2016.00206.10.3389/fphys.2016.00206Search in Google Scholar

Courtney, M. J., Li, L.-L. and Lai, Y. Y. (2014). Mechanisms of NOS1AP action on NMDA receptor-nNOS signaling. Front. Cell. Neurosci. 8: 252. https://doi.org/10.3389/fncel.2014.00252.10.3389/fncel.2014.00252Search in Google Scholar

Cramer, K. S., Moore, C. I. and Sur, M. (1995). Transient expression of NADPH‐diaphorase in the lateral geniculate nucleus of the ferret during early postnatal development. J. Comp. Neurol. 353: 306–316. https://doi.org/10.1002/cne.903530211.10.1002/cne.903530211Search in Google Scholar

Cramer, K. S. and Sur, M. (1995). Activity-dependent remodeling of connections in the mammalian visual system. Curr. Opin. Neurobiol. 5: 106–111. https://doi.org/10.1016/0959-4388(95)80094-8.10.1016/0959-4388(95)80094-8Search in Google Scholar

Cramer, K. S. and Sur, M. (1999). The neuronal form of nitric oxide synthase is required for pattern formation by retinal afferents in the ferret lateral geniculate nucleus. Develop. Brain Res. 116: 79–86. https://doi.org/10.1016/S0165-3806(99)00077-2.10.1016/S0165-3806(99)00077-2Search in Google Scholar

Cserep, C., Szőnyi, A., Veres, J. M., Nemeth, B., Szabadits, E., De Vente, J., Hajos, N., Freund, T. F. and Nyiri, G. (2011). Nitric oxide signaling modulates synaptic transmission during early postnatal development. Cerebr. Cortex 21: 2065–2074. https://doi.org/10.1093/cercor/bhq281.10.1093/cercor/bhq281Search in Google Scholar

Cui, H., Hayashi, A., Sun, H.-S., Belmares, M. P., Cobey, C., Phan, T., Schweizer, J., Salter, M. W., Wang, Y. T. and Tasker, R. A. (2007). PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J. Neurosci. 27: 9901–9915. https://doi.org/10.1523/JNEUROSCI.1464-07.2007.10.1523/JNEUROSCI.1464-07.2007Search in Google Scholar

Cutler, D. J., Morris, R., Evans, M. L., Leslie, R. A., Arch, J. R. and Williams, G. (2001). Orexin-A immunoreactive neurons in the rat hypothalamus do not contain neuronal nitric oxide synthase (nNOS). Peptides 22: 123–128. https://doi.org/10.1016/S0196-9781(00)00364-8.10.1016/S0196-9781(00)00364-8Search in Google Scholar

Denninger, J. W. and Marletta, M. A. (1999). Guanylate cyclase and the⋅ NO/cGMP signaling pathway. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1411: 334–350. https://doi.org/10.1016/S0005-2728(99)00024-9.10.1016/S0005-2728(99)00024-9Search in Google Scholar

Dittrich, L., Heiss, J. E., Warrier, D. R., Perez, X. A., Quik, M. and Kilduff, T. S. (2012). Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species. Front. Neural Circ. 6: 31. https://doi.org/10.3389/fncir.2012.00031.10.3389/fncir.2012.00031Search in Google Scholar

Doucet, M. V., Harkin, A and Dev, K. K. (2012). The PSD-95/nNOS complex: new drugs for depression? Pharmacol. Therapeut. 133: 218–229. https://doi.org/10.1016/j.pharmthera.2011.11.005.10.1016/j.pharmthera.2011.11.005Search in Google Scholar

D’yakonova, T. (2000). NO-producing compounds transform neuron responses to glutamate. Neurosci. Behav. Physiol. 30: 153–159. https://doi.org/10.1007/BF02463153.10.1007/BF02463153Search in Google Scholar

Eliasson, M. J., Blackshaw, S., Schell, M. J. and Snyder, S. H. (1997). Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc. Nat. Acad. Sci. 94: 3396–3401. https://doi.org/10.1073/pnas.94.7.3396.10.1073/pnas.94.7.3396Search in Google Scholar

Esplugues, J. V. (2002). NO as a signalling molecule in the nervous system. Br. J. Pharmacol. 135: 1079–1095. https://doi.org/10.1038/sj.bjp.0704569.10.1038/sj.bjp.0704569Search in Google Scholar

Fan, H.-P., Fan, F.-J., Bao, L. and Pei, G. (2006). SNAP-25/syntaxin 1A complex functionally modulates neurotransmitter γ-aminobutyric acid reuptake. J. Biol. Chem. 281: 28174–28184.10.1074/jbc.M601382200Search in Google Scholar

Fang, M., Jaffrey, S. R., Sawa, A., Ye, K., Luo, X. and Snyder, S. H. (2000). Dexras1: AG protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28: 183–193. https://doi.org/10.1016/S0896-6273(00)00095-7.10.1016/S0896-6273(00)00095-7Search in Google Scholar

Farr, S. A., Banks, W. A., Kumar, V. B. and Morley, J. E. (2005). Orexin-A-induced feeding is dependent on nitric oxide. Peptides 26: 759–765. https://doi.org/10.1016/j.peptides.2004.12.004.10.1016/j.peptides.2004.12.004Search in Google Scholar PubMed

Finney, E. M. and Shatz, C. J. (1998). Establishment of patterned thalamocortical connections does not require nitric oxide synthase. J. Neurosci. 18: 8826–8838. https://doi.org/10.1523/JNEUROSCI.18-21-08826.1998.10.1523/JNEUROSCI.18-21-08826.1998Search in Google Scholar

Förstermann, U., Closs, E. I., Pollock, J. S., Nakane, M., Schwarz, P., Gath, I. and Kleinert, H. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23: 1121–1131. https://doi.org/10.1161/01.HYP.23.6.1121.10.1161/01.HYP.23.6.1121Search in Google Scholar

Förstermann, U. and Sessa, W. C. (2011). Nitric oxide synthases: regulation and function. Eur. Heart J. 33: 829–837. https://doi.org/10.1093/eurheartj/ehr304.10.1093/eurheartj/ehr304Search in Google Scholar

Fuentealba, P., Begum, R., Capogna, M., Jinno, S., Marton, L. F., Csicsvari, J., Thomson, A., Somogyi, P. and Klausberger, T. (2008). Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57: 917–929. https://doi.org/10.1016/j.neuron.2008.01.034.10.1016/j.neuron.2008.01.034Search in Google Scholar

Gallo, E. F. and Iadecola, C. (2011). Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. J. Neurosci. 31: 6947–6955. https://doi.org/10.1523/JNEUROSCI.0374-11.2011.10.1523/JNEUROSCI.0374-11.2011Search in Google Scholar

Gao, H., Gao, Y., Li, X., Shen, A. and Yan, M. (2010). Spatiotemporal patterns of dexamethasone-induced Ras protein 1 expression in the central nervous system of rats with experimental autoimmune encephalomyelitis. J. Mol. Neurosci. 41: 198–209. https://doi.org/10.1007/s12031-009-9322-4.10.1007/s12031-009-9322-4Search in Google Scholar

Garthwaite, J. (2008). Concepts of neural nitric oxide‐mediated transmission. Eur. J. Neurosci. 27: 2783–2802. https://doi.org/10.1111/j.1460-9568.2008.06285.x.10.1111/j.1460-9568.2008.06285.xSearch in Google Scholar

Garthwaite, J. and Boulton, C. (1995). Nitric oxide signaling in the central nervous system. Annu. Rev. Physiol. 57: 683–706. https://doi.org/10.1146/annurev.ph.57.030195.003343.10.1146/annurev.ph.57.030195.003343Search in Google Scholar

Gibbs, S. M. (2003). Regulation of neuronal proliferation and differentiation by nitric oxide. Mol. Neurobiol. 27: 107–120. https://doi.org/10.1385/MN:27:2:107.10.1385/MN:27:2:107Search in Google Scholar

Gotti, S., Sica, M., Viglietti‐Panzica, C. and Panzica, G. (2005). Distribution of nitric oxide synthase immunoreactivity in the mouse brain. Micros. Res. Tech. 68: 13–35. https://doi.org/10.1002/jemt.20219.10.1002/jemt.20219Search in Google Scholar PubMed

Gudi, T., Huvar, I., Meinecke, M., Lohmann, S. M., Boss, G. R., and Pilz, R. B. (1996). Regulation of gene expression by cGMP-dependent protein kinase transactivation of the c-fos promoter. J. Biol. Chem. 271: 4597–4600. https://doi.org/10.1074/jbc.271.9.4597.10.1074/jbc.271.9.4597Search in Google Scholar PubMed

Gui, J., Song, Y., Han, N.-L. R. and Sheu, F.-S. (2007). Characterization of transcriptional regulation of neurogranin by nitric oxide and the role of neurogranin in SNP-induced cell death: implication of neurogranin in an increased neuronal susceptibility to oxidative stress. Int. J. Biol. Sci. 3: 212. https://doi.org/10.7150/ijbs.3.212.10.7150/ijbs.3.212Search in Google Scholar

Guix, F., Uribesalgo, I., Coma, M. and Munoz, F. (2005). The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol. 76: 126–152. https://doi.org/10.1016/j.pneurobio.2005.06.001.10.1016/j.pneurobio.2005.06.001Search in Google Scholar

Gutman, G. A., Chandy, K. G., Adelman, J. P., Aiyar, J., Bayliss, D. A., Clapham, D. E., Covarriubias, M., Desir, G. V., Furuichi, K. and Ganetzky, B. (2003). International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev. 55: 583–586. https://doi.org/10.1124/pr.55.4.9.10.1124/pr.55.4.9Search in Google Scholar

Haghikia, A., Mergia, E., Friebe, A., Eysel, U. T., Koesling, D. and Mittmann, T. (2007). Long-term potentiation in the visual cortex requires both nitric oxide receptor guanylyl cyclases. J. Neurosci. 27: 818–823. https://doi.org/10.1523/JNEUROSCI.4706-06.2007.10.1523/JNEUROSCI.4706-06.2007Search in Google Scholar

Hardingham, G. E. (2009). Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 37: 1147–1160. https://doi.org/10.1042/BST0371147.10.1042/BST0371147Search in Google Scholar

Haul, S., Gödecke, A., Schrader, J. r., Haas, H. L. and Luhmann, H. J. (1999). Impairment of neocortical long-term potentiation in mice deficient of endothelial nitric oxide synthase. J. Neurophys. 81: 494–497. https://doi.org/10.1152/jn.1999.81.2.494.10.1152/jn.1999.81.2.494Search in Google Scholar

Hopper, R. A. and Garthwaite, J. (2006). Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J. Neurosci. 26: 11513–11521. https://doi.org/10.1523/JNEUROSCI.2259-06.2006.10.1523/JNEUROSCI.2259-06.2006Search in Google Scholar

Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H. and Fishman, M. C. (1993). Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75: 1273–1286. https://doi.org/10.1016/0092-8674(93)90615-W.10.1016/0092-8674(93)90615-WSearch in Google Scholar

Jaffrey, S. R., Snowman, A. M., Eliasson, M. J., Cohen, N. A. and Snyder, S. H. (1998). CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20: 115–124. https://doi.org/10.1016/S0896-6273(00)80439-0.10.1016/S0896-6273(00)80439-0Search in Google Scholar

Jaffrey, S. R. and Snyder, S. H. (1996). PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274: 774–777. https://doi.org/10.1126/science.274.5288.774.10.1126/science.274.5288.774Search in Google Scholar PubMed

Jeck, C. D., Zimmermann, R., Schaper, J. and Schaper, W. (1994). Decreased expression of calmodulin mRNA in human end-stage heart failure. J. Mol. Cell. Cardiol. 26: 99–107. https://doi.org/10.1006/jmcc.1994.1011.10.1006/jmcc.1994.1011Search in Google Scholar

Jin, X., Yu, Z.-F., Chen, F., Lu, G.-X., Ding, X.-Y., Xie, L.-J. and Sun, J.-T. (2017). Neuronal nitric oxide synthase in neural stem cells induces neuronal fate commitment via the inhibition of histone deacetylase 2. Front. Cell. Neurosci. 11: 66. https://doi.org/10.3389/fncel.2017.00066.10.3389/fncel.2017.00066Search in Google Scholar

Jinno, S. and Kosaka, T. (2002). Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of hippocampal GABAergic neurons in mice. J. Comp. Neurol. 449: 1–25. https://doi.org/10.1002/cne.10251.10.1002/cne.10251Search in Google Scholar

Johnstone, V. P. and Raymond, C. R. (2011). A protein synthesis and nitric oxide-dependent presynaptic enhancement in persistent forms of long-term potentiation. Learn. Mem. 18: 625–633. https://doi.org/10.1101/lm.2245911.10.1101/lm.2245911Search in Google Scholar

Kalb, R. and Agostini, J. (1993). Molecular evidence for nitric oxide-mediated motor neuron development. Neuroscience 57: 1–8. https://doi.org/10.1016/0306-4522(93)90107-Q.10.1016/0306-4522(93)90107-QSearch in Google Scholar

Kang, Y.-C., Kim, P. K., Choi, B.-M., Chung, H.-T., Ha, K.-S., Kwon, Y.-G. and Kim, Y.-M. (2004). Regulation of programmed cell death in neuronal cells by nitric oxide. In Vivo 18: 367–376.Search in Google Scholar

Kantor, D. B., Lanzrein, M., Stary, S. J., Sandoval, G. M., Smith, W. B., Sullivan, B. M., N. Davidson and E. M. Schuman (1996). A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 274: 1744–1748. https://doi.org/10.1126/science.274.5293.1744.10.1126/science.274.5293.1744Search in Google Scholar PubMed

Karagiannis, A., Gallopin, T., Dávid, C., Battaglia, D., Geoffroy, H., Rossier, J., Hillman, E. M., Staiger, J. F. and Cauli, B. (2009). Classification of NPY-expressing neocortical interneurons. J. Neurosci. 29: 3642–3659. https://doi.org/10.1523/JNEUROSCI.0058-09.2009.10.1523/JNEUROSCI.0058-09.2009Search in Google Scholar PubMed PubMed Central

Kellner, Y., Gödecke, N., Dierkes, T., Thieme, N., Zagrebelsky, M. and Korte, M. K. (2014). The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Front. Synap. Neurosci. 6: 5. https://doi.org/10.3389/fnsyn.2014.00005.10.3389/fnsyn.2014.00005Search in Google Scholar PubMed PubMed Central

Kerrick, W. G. L., Xu, Y. and Percival, J. M. (2018). nNOS splice variants differentially regulate myofilament function but are dispensable for intracellular calcium and force transients in cardiac papillary muscles. PloS one 13: e0200834. https://doi.org/10.1371/journal.pone.0200834.10.1371/journal.pone.0200834Search in Google Scholar PubMed PubMed Central

Kilduff, T. S., Cauli, B. and Gerashchenko, D. (2011). Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trend Neurosci. 34: 10–19. https://doi.org/10.1016/j.tins.2010.09.005.10.1016/j.tins.2010.09.005Search in Google Scholar PubMed PubMed Central

Kim, S. F. (2011). The role of nitric oxide in prostaglandin biology; update. Nitric Oxide 25: 255–264. https://doi.org/10.1016/j.niox.2011.07.002.10.1016/j.niox.2011.07.002Search in Google Scholar

Kiss, J. P. and Vizi, E. S. (2001). Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci. 24: 211–215. https://doi.org/10.1016/S0166-2236(00)01745-8.10.1016/S0166-2236(00)01745-8Search in Google Scholar

Ko, G. Y. and Kelly, P. T. (1999). Nitric oxide acts as a postsynaptic signaling molecule in calcium/calmodulin-induced synaptic potentiation in hippocampal CA1 pyramidal neurons. J. Neurosci. 19: 6784–6794. https://doi.org/10.1523/JNEUROSCI.19-16-06784.1999.10.1523/JNEUROSCI.19-16-06784.1999Search in Google Scholar

Komaki, A., Shahidi, S., Sarihi, A., Hasanein, P., Lashgari, R., Haghparast, A., Salehi, I. and Arami, M. K. (2013). Effects of neonatal C-fiber depletion on interaction between neocortical short-term and long-term plasticity. Basic Clin. Neurosci. 4: 136.Search in Google Scholar

Komeima, K., Hayashi, Y., Naito, Y. and Watanabe, Y. (2000). Inhibition of nNOS by calcium/calmodulin-dependent protein kinase IIalpha through Ser847 phosphorylation in NG108-15 neuronal cells. J. Biol. Chem 275 (36), 28139–28143. https://doi.org/10.1074/jbc.M003198200.10.1074/jbc.M003198200Search in Google Scholar

Kourosh Arami, M., Sarihi, A., Behzadi, J., Malakouti, S. M., Amiri, I. and Zare Ekbatani, R. (2005). The effect of hyperglycemia on nitric oxidergic neurons in nucleus tractus solitarius and blood pressure regulation in rats with induced diabetes. Iran. J. Diabetes Metabol. 4: 11–17.Search in Google Scholar

Kourosh Arami, M., Sarihi, A., Malacoti, S. M., Behzadi, G., Vahabian, M. and Amiri, I. (2006). The effect of nucleus tractus solitarius nitric oxidergic neurons on blood pressure in diabetic rats. Iran. Biomed. J. 10: 15–19.Search in Google Scholar

Kourosh Arami, M., Semnanian, S., Javan, M., Hajizadeh, S. and Sarihi, A. (2011). Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat. Physiol. Pharmacol. 14: 338–348.Search in Google Scholar

Kourosh-Arami, M., Javan, M., and Semnanian, S. (2020). Inhibition of orexin receptor 1 contributes to the development of morphine dependence via attenuation of cAMP response element-binding protein and phospholipase Cβ3. Journal of Chemical Neuroanatomy. https://doi.org/10.1016/j.jchemneu.2020.101801. In press.10.1016/j.jchemneu.2020.101801Search in Google Scholar

Kubota, Y. and Kawaguchi, Y. (2000). Dependence of GABAergic synaptic areas on the interneuron type and target size. J. Neurosci. 20: 375–386. https://doi.org/10.1523/JNEUROSCI.20-01-00375.2000.10.1523/JNEUROSCI.20-01-00375.2000Search in Google Scholar

Kubota, Y., Shigematsu, N., Karube, F., Sekigawa, A., Kato, S, Yamaguchi, N., Hirai, Y., Morishima, M. and Kawaguchi, Y. (2011). Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cerebr. Cortex 21: 1803–1817. https://doi.org/10.1093/cercor/bhq252.10.1093/cercor/bhq252Search in Google Scholar

Lange, M., Doengi, M., Lesting, J., Pape, H. and Jüngling, K. (2012). Heterosynaptic long‐term potentiation at interneuron–principal neuron synapses in the amygdala requires nitric oxide signalling. J. Physiol. 590: 131–143. https://doi.org/10.1113/jphysiol.2011.221317.10.1113/jphysiol.2011.221317Search in Google Scholar

Lev-Ram, V., Makings, L. R., Keitz, P. F., Kao, J. P. and Tsien, R. Y. (1995). Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients. Neuron 15: 407–415. https://doi.org/10.1016/0896-6273(95)90044-6.10.1016/0896-6273(95)90044-6Search in Google Scholar

Li, L.-P., Dustrude, E., Haulcomb, M., Abreu, A., Fitz, S., Johnson, P., Thakur, G., Molosh, A., Lai, Y. and Shekhar, A. (2018). PSD95 and nNOS interaction as a novel molecular target to modulate conditioned fear: relevance to PTSD. Trans. Psych. 8: 155. https://doi.org/10.1038/s41398-018-0208-5.10.1038/s41398-018-0208-5Search in Google Scholar PubMed PubMed Central

Li, H., Gu, X., Dawson, V. L. and Dawson, T. M. (2004). Identification of calcium-and nitric oxide-regulated genes by differential analysis of library expression (DAzLE). Proc. Nat. Acad. Sci. 101: 647–652. https://doi.org/10.1073/pnas.0305145101.10.1073/pnas.0305145101Search in Google Scholar PubMed PubMed Central

Lin, C.-S., Lau, A., Bakircioglu, E., Tu, R., Wu, F., Week, S., Nunes, L. and Lue, T. F. (1998). Analysis of neuronal nitric oxide synthase isoform expression and identification of human nNOS-μ. Biochem. Biophys. Res. Commun. 253: 388–394. https://doi.org/10.1006/bbrc.1998.9658.10.1006/bbrc.1998.9658Search in Google Scholar PubMed

Ling, S., Zhou, J., Rudd, J. A., Hu, Z. and Fang, M. (2012). The expression of neuronal nitric oxide synthase in the brain of the mouse during embryogenesis. Anatom. Rec. Adv. Integ. Anat. Evol. Biol. 295: 504–514. https://doi.org/10.1002/ar.22408.10.1002/ar.22408Search in Google Scholar PubMed

Lionel, A. C., Vaags, A. K., Sato, D., Gazzellone, M. J., Mitchell, E. B., Chen, H. Y., Costain, G., Walker, S., Egger, G. and Thiruvahindrapuram, B. (2013). Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum. Mol. Gen. 22: 2055–2066. https://doi.org/10.1093/hmg/ddt056.10.1093/hmg/ddt056Search in Google Scholar PubMed

Lirk, P., Hoffmann, G. and Rieder, J. (2002). Inducible nitric oxide synthase-time for reappraisal. Curr. Drug Targets-Inflamm. Allergy 1: 89–108. https://doi.org/10.2174/1568010023344913.10.2174/1568010023344913Search in Google Scholar PubMed

Lisman, J. and Raghavachari, S. (2006). A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci. STKE 2006: re11-re11. https://doi.org/10.1126/stke.3562006re11.10.1126/stke.3562006re11Search in Google Scholar PubMed

Loebrich, S. and Nedivi, E. (2009). The function of activity-regulated genes in the nervous system. Physiol. Rev. 89: 1079–1103. https://doi.org/10.1152/physrev.00013.2009.10.1152/physrev.00013.2009Search in Google Scholar PubMed PubMed Central

Looft-Wilson, R., Billaud, M., Johnstone, S., Straub, A. and Isakson, B. (2012). Interaction between nitric oxide signaling and gap junctions: effects on vascular function. Biochim. Biophys. Acta Biomembr. 1818: 1895–1902. https://doi.org/10.1016/j.bbamem.2011.07.031.10.1016/j.bbamem.2011.07.031Search in Google Scholar PubMed PubMed Central

Loup, F., Wieser, H.-G., Yonekawa, Y.,Aguzzi, A. and Fritschy, J.-M. (2000). Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J. Neurosci. 20: 5401–5419. https://doi.org/10.1523/JNEUROSCI.20-14-05401.2000.10.1523/JNEUROSCI.20-14-05401.2000Search in Google Scholar

Luo, C. X., Jin, X., Cao, C. C., Zhu, M. M., Wang, B., Chang, L., Zhou, Q. G., Wu, H. Y. and Zhu, D. Y. (2010). Bidirectional regulation of neurogenesis by neuronal nitric oxide synthase derived from neurons and neural stem cells. Stem Cell. 28: 2041–2052. https://doi.org/10.1002/stem.522.10.1002/stem.522Search in Google Scholar PubMed

Magno, L., Oliveira, M. G., Mucha, M., Rubin, A. N. and Kessaris, N. (2012). Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex. Front. Neural Circ. 6: 65. https://doi.org/10.3389/fncir.2012.00065.10.3389/fncir.2012.00065Search in Google Scholar

Malakouti, S. M., Kourosh Arami, M., Sarihi, A., Hajizadeh, S., Behzadi, G., Shahidi, S., Komaki, A., Heshmatian, B. and Vahabian, M. (2008). Reversible inactivation and excitation of nucleus raphe magnus can modulate tail blood flow of male wistar rats in response to hypothermia. Iran. Biomed. J. 12: 237–240.Search in Google Scholar

Malenka, R. C. and Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44: 5–21. https://doi.org/10.1016/j.neuron.2004.09.012.10.1016/j.neuron.2004.09.012Search in Google Scholar

Matsushita, K., Morrell, C. N., Cambien, B., Yang, S.-X., Yamakuchi, M., Bao, C., Hara, M. R., Quick, R. A., Cao, W. and O’Rourke, B. (2003). Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115: 139–150. https://doi.org/10.1016/s0092-8674(03)00803-1.10.1016/S0092-8674(03)00803-1Search in Google Scholar

Megason, S. G. and McMahon, A. P. (2002). A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129: 2087–2098.10.1242/dev.129.9.2087Search in Google Scholar PubMed

Meini, A., Sticozzi, C., Massai, L. and Palmi, M. (2008). A nitric oxide/Ca2+/calmodulin/ERK1/2 mitogen‐activated protein kinase pathway is involved in the mitogenic effect of IL‐1β in human astrocytoma cells. Br. J. Pharmacol. 153: 1706–1717. https://doi.org/10.1038/bjp.2008.40.10.1038/bjp.2008.40Search in Google Scholar PubMed PubMed Central

Merino-Gracia, J., Costas-Insua, C., Canales, M. Á. and Rodríguez-Crespo, I. (2016). Insights into the C-terminal peptide binding specificity of the PDZ domain of neuronal nitric-oxide synthase characterization of the interaction with the tight junction protein claudin-3. J. Biol. Chem. 291: 11581–11595. https://doi.org/10.1074/jbc.M116.724427.10.1074/jbc.M116.724427Search in Google Scholar PubMed PubMed Central

Moncada, S. and Bolaños, J. P. (2006). Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 97: 1676–1689. https://doi.org/10.1111/j.1471-4159.2006.03988.x.10.1111/j.1471-4159.2006.03988.xSearch in Google Scholar PubMed

Moreno-López, B., Romero-Grimaldi, C., Noval, J. A., Murillo-Carretero, M., Matarredona, E. R. and Estrada, C. (2004). Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J. Neurosci. 24: 85–95. https://doi.org/10.1523/JNEUROSCI.1574-03.2004.10.1523/JNEUROSCI.1574-03.2004Search in Google Scholar PubMed PubMed Central

Nadjafi, S., Ebrahimi, S.-A. and Rahbar-Roshandel, N. (2014). Effect of berberine on nitric oxide production during oxygen-glucose deprivation/reperfusion in OLN-93 oligodendrocytes. Pakistan J. Biol. Sci. 17: 1185–1189. https://doi.org/10.3923/pjbs.2014.1185.1189.10.3923/pjbs.2014.1185.1189Search in Google Scholar PubMed

Nadjafi, S., Ebrahimi, S. and Rahbar-Roshandel, N. (2015). Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: calcium and nitric oxide involvement. Acta Physiol. Hungarica 102: 351–362. https://doi.org/10.1556/036.102.2015.4.2.10.1556/036.102.2015.4.2Search in Google Scholar PubMed

Nakane, M., Mitchell, J., Förstermann, U. and Murad, F. (1991). Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase. Biochem. Biophys. Res. Commun. 180: 1396–1402. https://doi.org/10.1016/s0006-291x(05)81351-8.10.1016/S0006-291X(05)81351-8Search in Google Scholar

Nikonenko, I., Nikonenko, A., Mendez, P., Michurina, T. V., Enikolopov, G. and Muller, D. (2013). Nitric oxide mediates local activity-dependent excitatory synapse development. Proc. Nat. Acad. Sci. USA 110: E4142–E4151. https://doi.org/10.1073/pnas.1311927110.10.1073/pnas.1311927110Search in Google Scholar PubMed PubMed Central

Obukuro, K., Nobunaga, M., Takigawa, M., Morioka, H., Hisatsune, A., Isohama, Y., Shimokawa, H., Tsutsui, M. and Katsuki, H. (2013). Nitric oxide mediates selective degeneration of hypothalamic orexin neurons through dysfunction of protein disulfide isomerase. J. Neurosci. 33: 12557–12568. https://doi.org/10.1523/JNEUROSCI.0595-13.2013.10.1523/JNEUROSCI.0595-13.2013Search in Google Scholar PubMed PubMed Central

Ogasawara, H., T. Doi, K. Doya and Kawato, M. (2007). Nitric oxide regulates input specificity of long-term depression and context dependence of cerebellar learning. PLoS Comput. Biol. 3: e179. https://doi.org/10.1371/journal.pcbi.0020179.10.1371/journal.pcbi.0020179Search in Google Scholar PubMed PubMed Central

Oláh, S., Füle, M., Komlósi, G., Varga, C., Báldi, R., Barzó, P. and Tamás, G. (2009). Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461: 1278. https://doi.org/10.1038/nature08503.10.1038/nature08503Search in Google Scholar PubMed PubMed Central

Olmos, J. L., Real, M. A., Medina, L., Guirado, S. and Dávila, J. C. (2005). Distribution of nitric oxide-producing neurons in the developing and adult mouse amygdalar basolateral complex. Brain Res. Bull. 66: 465–469. https://doi.org/10.1016/j.brainresbull.2005.04.002.10.1016/j.brainresbull.2005.04.002Search in Google Scholar PubMed

Opazo, P., A. M. Watabe, S. G. Grant and T. J. O’Dell (2003). Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J. Neurosci. 23: 3679–3688. https://doi.org/10.1523/JNEUROSCI.23-09-03679.2003.10.1523/JNEUROSCI.23-09-03679.2003Search in Google Scholar

Palumbo, M. L., Fosser, N. S., Rios, H., Zubilete, M. A. Z., Guelman, L. R., Cremaschi, G. A. and Genaro, A. M. (2007). Loss of hippocampal neuronal nitric oxide synthase contributes to the stress‐related deficit in learning and memory. J. Neurochem. 102: 261–274. https://doi.org/10.1111/j.1471-4159.2007.04528.x.10.1111/j.1471-4159.2007.04528.xSearch in Google Scholar PubMed

Pelkey, K. A., Chittajallu, R., Craig, M. T., Tricoire, L., Wester, J. C. and McBain, C. J. (2017). Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 97: 1619–1747. https://doi.org/10.1152/physrev.00007.2017.10.1152/physrev.00007.2017Search in Google Scholar PubMed PubMed Central

Peng, H.-M., Morishima, Y., Pratt, W. B. and Osawa, Y. (2012). Modulation of heme/substrate binding cleft of neuronal nitric-oxide synthase (nNOS) regulates binding of Hsp90 and Hsp70 proteins and nNOS ubiquitination. J. Biol. Chem. 287: 1556–1565. https://doi.org/10.1074/jbc.M111.323295.10.1074/jbc.M111.323295Search in Google Scholar PubMed PubMed Central

Perrenoud, Q., Geoffroy, H., Gautier, B., Rancillac, A., Alfonsi, F., Kessaris, N., Rossier, J., Vitalis, T. and Gallopin, T. (2012a). Characterization of type I and type II nNOS-expressing interneurons in the barrel cortex of mouse. Front. Neural Circ. 6: 36. https://doi.org/10.3389/fncir.2012.00036. eCollection 2012.10.3389/fncir.2012.00036Search in Google Scholar

Perrenoud, Q., Rossier, J., Férézou, I., Geoffroy, H., Gallopin, T., Vitalis, T. and Rancillac, A. (2012b). Activation of cortical 5-HT3 receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions. Front. Neural Circ. 6: 50. https://doi.org/10.3389/fncir.2012.00050.10.3389/fncir.2012.00050Search in Google Scholar

Phillips, K. G., Hardingham, N. R. and Fox, K. (2008). Postsynaptic action potentials are required for nitric-oxide-dependent long-term potentiation in CA1 neurons of adult GluR1 knock-out and wild-type mice. J. Neurosci. 28: 14031–14041. https://doi.org/10.1523/JNEUROSCI.3984-08.2008.10.1523/JNEUROSCI.3984-08.2008Search in Google Scholar

Pigott, B. M. and Garthwaite, J. (2016). Nitric oxide is required for L-type Ca2+ channel-dependent long-term potentiation in the hippocampus. Front. Synap. Neuroscience 8: 17. https://doi.org/10.3389/fnsyn.2016.00017.10.3389/fnsyn.2016.00017Search in Google Scholar

Prast, H. and Philippu, A. (2001). Nitric oxide as modulator of neuronal function. Prog. Neurobiol. 64: 51–68. https://doi.org/10.1016/S0301-0082(00)00044-7.10.1016/S0301-0082(00)00044-7Search in Google Scholar

Qiu, D.-l. and Knöpfel, T. (2007). An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber–Purkinje neuron long-term potentiation. J. Neurosci. 27: 3408–3415. https://doi.org/10.1523/JNEUROSCI.4831-06.2007.10.1523/JNEUROSCI.4831-06.2007Search in Google Scholar PubMed PubMed Central

Qu, G.-J., Ma, J., Yu, Y.-C and Fu, Y. (2016). Postnatal development of GABAergic interneurons in the neocortical subplate of mice. Neuroscience 322: 78–93. https://doi.org/10.1016/j.neuroscience.2016.02.023.10.1016/j.neuroscience.2016.02.023Search in Google Scholar PubMed

Rafalovich, I. V., Melendez, A. E., Plotkin, J. L., Tanimura, A., Zhai, S. and Surmeier, D. J. (2015). Interneuronal nitric oxide signaling mediates post-synaptic long-term depression of striatal glutamatergic synapses. Cell Rep. 13: 1336–1342. https://doi.org/10.1016/j.celrep.2015.10.015.10.1016/j.celrep.2015.10.015Search in Google Scholar PubMed PubMed Central

Raju, K., Doulias, P.-T., Evans, P., Krizman, E. N., Jackson, J. G., Horyn, O., Daikhin, Y., Nissim, I., Yudkoff, M. and Nissim, I. (2015). Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Sci. Signal. 8: ra68-ra68. https://doi.org/10.1126/scisignal.aaa4312.10.1126/scisignal.aaa4312Search in Google Scholar PubMed PubMed Central

Rameau, G. A., Chiu, L.-Y. and Ziff, E. B. (2004). Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J. Biol. Chem. 279: 14307–14314. https://doi.org/10.1074/jbc.M311103200.10.1074/jbc.M311103200Search in Google Scholar PubMed

Rancillac, A., Rossier, J., Guille, M., Tong, X.-K., Geoffroy, H., Amatore, C., Arbault, S., Hamel, E. and Cauli, B. (2006). Glutamatergic control of microvascular tone by distinct GABA neurons in the cerebellum. J. Neurosci. 26: 6997–7006. https://doi.org/10.1523/JNEUROSCI.5515-05.2006.10.1523/JNEUROSCI.5515-05.2006Search in Google Scholar

Rapoport, R. M. (2014). Nitric oxide inhibition of endothelin-1 release in the vasculature: in vivo relevance of in vitro findings. Hypertension 64: 908–914.10.1161/HYPERTENSIONAHA.114.03837Search in Google Scholar

Rasgado, L. A. V., Reyes, G. C. and Díaz, F. V. (2018). Role of nitric oxide synthase on brain GABA transaminase activity and GABA levels. Acta Pharma. 68: 349–359. https://doi.org/10.2478/acph-2018-0022.10.2478/acph-2018-0022Search in Google Scholar

Regehr, W. G., Carey, M. R. and Best, A. R. (2009). Activity-dependent regulation of synapses by retrograde messengers. Neuron 63: 154–170. https://doi.org/10.1016/j.neuron.2009.06.021.10.1016/j.neuron.2009.06.021Search in Google Scholar

Rezaei, Z., Kourosh-Arami, M., Azizi, H. and Semnanian, S. (2020). Orexin type-1 receptor inhibition in the rat lateral paragigantocellularis nucleus attenuates development of morphine dependence. Neuroscience Letters 134875. https://doi.org/10.1016/j.neulet.2020.134875. Epub 2020 Feb 27.10.1016/j.neulet.2020.134875Search in Google Scholar

Richier, L., Williton, K., Clattenburg, L., Colwill, K., O’Brien, M., Tsang, C., Kolar, A., Zinck, N., Metalnikov, P. and Trimble, W. S. (2010). NOS1AP associates with scribble and regulates dendritic spine development. J. Neurosci. 30: 4796–4805. https://doi.org/10.1523/JNEUROSCI.3726-09.2010.10.1523/JNEUROSCI.3726-09.2010Search in Google Scholar

Roerig, B. and Feller, M. B. (2000). Neurotransmitters and gap junctions in developing neural circuits. Brain Res. Rev. 32: 86–114. https://doi.org/10.1016/s0165-0173(99)00069-7.10.1016/S0165-0173(99)00069-7Search in Google Scholar

Rörig, B. and Sutor, B. (1996). Regulation of gap junction coupling in the developing neocortex. Mol. Neurobiol. 12: 225–249. https://doi.org/10.1007/BF02755590.10.1007/BF02755590Search in Google Scholar PubMed

Sarihi, A., Mirnajafi-Zadeh, J., Jiang, B., Sohya, K., Safari, M.-S., Arami, M. K., Yanagawa, Y. and Tsumoto, T. (2012). Cell type-specific, presynaptic LTP of inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual cortex. J. Neurosci. 32: 13189–13199. https://doi.org/10.1523/JNEUROSCI.1386-12.2012.10.1523/JNEUROSCI.1386-12.2012Search in Google Scholar PubMed PubMed Central

Schuman, E. M. and Madison, D. V. (1991). A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254: 1503–1506. https://doi.org/10.1126/science.1720572.10.1126/science.1720572Search in Google Scholar PubMed

Schuman, E. M., Meffert, M. K., Schulman, H. and Madison, D. V. (1994). An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc. Nat. Acad. Sci. USA 91: 11958–11962. https://doi.org/10.1073/pnas.91.25.11958.10.1073/pnas.91.25.11958Search in Google Scholar

Sellak, H., Choi, C.-s., Dey, N. B. and Lincoln, T. M. (2012). Transcriptional and post-transcriptional regulation of cGMP-dependent protein kinase (PKG-I): pathophysiological significance. Cardiovasc. Res. 97: 200–207. https://doi.org/10.1093/cvr/cvs327.10.1093/cvr/cvs327Search in Google Scholar

Sharma, N. M. and Patel, K. P. (2017). Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opin. Ther. Targets 21: 11–22. https://doi.org/10.1080/14728222.2017.1265505.10.1080/14728222.2017.1265505Search in Google Scholar

Shlosberg, D., Buskila, Y., Abu-Ghanem, Y. and Amitai, Y. (2012). Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons. Front. Neural Circ. 6: 3. https://doi.org/10.3389/fncir.2012.00003.10.3389/fncir.2012.00003Search in Google Scholar

Smiley, J. F., McGinnis, J. P. and Javitt, D. C. (2000). Nitric oxide synthase interneurons in the monkey cerebral cortex are subsets of the somatostatin, neuropeptide Y, and calbindin cells. Brain Res. 863: 205–212. https://doi.org/10.1016/S0006-8993(00)02136-3.10.1016/S0006-8993(00)02136-3Search in Google Scholar

Snyder, S. H., Jaffrey, S. R. and Zakhary, R. (1998). Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res. Rev. 26: 167–175. https://doi.org/10.1016/S0165-0173(97)00032-5.10.1016/S0165-0173(97)00032-5Search in Google Scholar

Somogyi, P. and Klausberger, T. (2005). Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. 562: 9–26. https://doi.org/10.1113/jphysiol.2004.078915.10.1113/jphysiol.2004.078915Search in Google Scholar

Son, H., Hawkins, R. D., Martin, K., Kiebler, M., Huang, P. L., Fishman, M. C. and Kandel, E. R. (1996). Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87: 1015–1023. https://doi.org/10.1016/S0092-8674(00)81796-1.10.1016/S0092-8674(00)81796-1Search in Google Scholar

Sousa, J. B., Vieira-Rocha, M. S., Arribas, S. M., González, M. C., Fresco, P. and Diniz, C. (2015). Endothelial and neuronal nitric oxide activate distinct pathways on sympathetic neurotransmission in rat tail and mesenteric arteries. PloS one 10: e0129224. https://doi.org/10.1371/journal.pone.0129224.%0d.10.1371/journal.pone.0129224Search in Google Scholar PubMed PubMed Central

Steinert, J. R., Kopp-Scheinpflug, C., Baker, C., Challiss, R. J., Mistry, R., Haustein, M. D., Griffin, S. J., Tong, H., Graham, B. P. and Forsythe, I. D. (2008). Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 60: 642–656. https://doi.org/10.1016/j.neuron.2008.08.025.10.1016/j.neuron.2008.08.025Search in Google Scholar PubMed

Steinert, J. R., Robinson, S. W., Tong, H., Haustein, M. D., Kopp-Scheinpflug, C. and Forsythe, I. D. (2011). Nitric oxide is an activity-dependent regulator of target neuron intrinsic excitability. Neuron 71: 291–305. https://doi.org/10.1016/j.neuron.2011.05.037.10.1016/j.neuron.2011.05.037Search in Google Scholar PubMed PubMed Central

Tanaka, K., Shimizu, T., Higashi, Y., Nakamura, K., Taniuchi, K., Dimitriadis, F., Shimizu, S., Yokotani, K. and Saito, M. (2014). Central bombesin possibly induces S-nitrosylation of cyclooxygenase-1 in pre-sympathetic neurons of rat hypothalamic paraventricular nucleus. Life Sci. 100: 85–96. https://doi.org/10.1016/j.lfs.2014.01.079.10.1016/j.lfs.2014.01.079Search in Google Scholar PubMed

Tomita, S., Nicoll, R. A. and Bredt, D. S. (2001). PDZ protein interactions regulating glutamate receptor function and plasticity. J. Cell Biol. 153: F19–F24. https://doi.org/10.1083/jcb.153.5.f19.10.1083/jcb.153.5.F19Search in Google Scholar PubMed PubMed Central

Tozer, A. J., Forsythe, I. D. and Steinert, J. R. (2012). Nitric oxide signalling augments neuronal voltage-gated L-type (Cav1) and P/Q-type (Cav2. 1) channels in the mouse medial nucleus of the trapezoid body. PloS One 7: e32256. https://doi.org/10.1371/journal.pone.0032256.10.1371/journal.pone.0032256Search in Google Scholar PubMed PubMed Central

Tricoire, L. and Tania, V. (2012). Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Front. Neural Circ. 6: 82. https://doi.org/10.3389/fncir.2012.00082.10.3389/fncir.2012.00082Search in Google Scholar PubMed PubMed Central

Van der Loos, H. and Woolsey, T. A. (1973). Somatosensory cortex: structural alterations following early injury to sense organs. Science 179: 395–398. https://doi.org/10.1126/science.179.4071.395.10.1126/science.179.4071.395Search in Google Scholar PubMed

Vercelli, A., Garbossa, D., Biasiol, S., Repici, M. and Jhaveri, S. (2000). NOS inhibition during postnatal development leads to increased ipsilateral retinocollicular and retinogeniculate projections in rats. Eur. J. Neurosci. 12: 473–490. https://doi.org/10.1046/j.1460-9568.2000.00925.x.10.1046/j.1460-9568.2000.00925.xSearch in Google Scholar PubMed

Vincent, S. R. (2010). Nitric oxide neurons and neurotransmission. Prog. Neurobiol. 90: 246–255. https://doi.org/10.1016/j.pneurobio.2009.10.007.10.1016/j.pneurobio.2009.10.007Search in Google Scholar PubMed

Volgushev, M., Balaban, P., Chistiakova, M. and Eysel, U. T. (2000). Retrograde signalling with nitric oxide at neocortical synapses. Eur. J. Neurosci. 12: 4255–4267. https://doi.org/10.1046/j.0953-816x.2000.01322.x.10.1046/j.0953-816X.2000.01322.xSearch in Google Scholar PubMed

West, A. R. and Tseng, K. Y. (2011). Nitric oxide–soluble guanylyl cyclase–cyclic GMP signaling in the striatum: new targets for the treatment of Parkinson’s disease? Front. Sys. Neurosci. 5: 55. https://doi.org/10.3389/fnsys.2011.00055.10.3389/fnsys.2011.00055Search in Google Scholar PubMed PubMed Central

Wilson, G. W. and Garthwaite, J. (2010). Hyperpolarization‐activated ion channels as targets for nitric oxide signalling in deep cerebellar nuclei. Eur. J. Neurosci. 31: 1935–1945. https://doi.org/10.1111/j.1460-9568.2010.07226.x.10.1111/j.1460-9568.2010.07226.xSearch in Google Scholar

Wolpert, L. (1996). One hundred years of positional information. Trends Gen. 12: 359–364.10.1016/S0168-9525(96)80019-9Search in Google Scholar

Wu, H. H., Cork, R. J., Huang, P. L., Shuman, D. L. and Mize, R. R. (2000). Refinement of the ipsilateral retinocollicular projection is disrupted in double endothelial and neuronal nitric oxide synthase gene knockout mice. Develop. Brain Res. 120: 105–111. https://doi.org/10.1016/S0165-3806(99)00145-5.10.1016/S0165-3806(99)00145-5Search in Google Scholar

Wu, H. H., Waid, D. K. and McLoon, S. C. (1996). Nitric oxide and the developmental remodeling of retinal connections in the brain. Prog. Brain Res. 108: 273–286. https://doi.org/10.1016/S0079-6123(08)62546-7.10.1016/S0079-6123(08)62546-7Search in Google Scholar

Xia, Y., Berlowitz, C. O. and Zweier, J. L. (2006). PIN inhibits nitric oxide and superoxide production from purified neuronal nitric oxide synthase. Biochim. Biophys. Acta Gen. Sub. 1760: 1445–1449. https://doi.org/10.1016/j.bbagen.2006.04.007.10.1016/j.bbagen.2006.04.007Search in Google Scholar PubMed

Xue, L., Farrugia, G., Miller, S., Ferris, C., Snyder, S. H. and Szurszewski, J. (2000). Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes. Proc. Nat. Acad. Sci. 97: 1851–1855. https://doi.org/10.1073/pnas.97.4.1851.10.1073/pnas.97.4.1851Search in Google Scholar PubMed PubMed Central

Yan, X. and Garey, L. (1997). Morphological diversity of nitric oxide synthesising neurons in mammalian cerebral cortex. J. Hirnforsc. 38: 165–172.Search in Google Scholar

Yao, S., Jay, L. and Yong, X. (2001). Heat-shock protein 90 augments neuronal nitric oxide synthase activity by enhancing Ca2+/calmodulin binding. Biochem. J. 355: 357-360. https://doi.org/10.1042/bj3550357.10.1042/bj3550357Search in Google Scholar

Yuan, Q., Scott, D. E., So, K. F. and Wu, W. (2006). Developmental changes of nitric oxide synthase expression in the rat hypothalamoneurohypophyseal system. The anatomical record part A: Discoveries in molecular, cellular, and evolutionary biology, 288. An Official Publication of the American Association of Anatomists, https://doi.org/10.1002/ar.a.20271, pp. 36–45.10.1002/ar.a.20271Search in Google Scholar PubMed

Zayas, R. M., Qazi, S., Morton, D. B. and Trimmer, B. A. (2002). Nicotinic‐acetylcholine receptors are functionally coupled to the nitric oxide/cGMP‐pathway in insect neurons. J. Neurochem. 83: 421–431. https://doi.org/10.1046/j.1471-4159.2002.01147.x.10.1046/j.1471-4159.2002.01147.xSearch in Google Scholar PubMed

Zhang, Y. H., Jin, C. Z., Jang, J. H. and Wang, Y. (2014). Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J. Physiol. 592: 3189–3200. https://doi.org/10.1113/jphysiol.2013.270306.10.1113/jphysiol.2013.270306Search in Google Scholar PubMed PubMed Central

Zhong, L. R., Estes, S., Artinian, L. and Rehder, V. (2013). Nitric oxide regulates neuronal activity via calcium-activated potassium channels. PloS One 8: e78727. https://doi.org/10.1371/journal.pone.0078727.10.1371/journal.pone.0078727Search in Google Scholar PubMed PubMed Central

Zhou, M.-H., Bavencoffe, A. and Pan, H.-L. (2015). Molecular basis of regulating high voltage-activated calcium channels by S-nitrosylation. J. Biol. Chem. 290: 30616–30623. https://doi.org/10.1074/jbc.M115.685206.10.1074/jbc.M115.685206Search in Google Scholar PubMed PubMed Central

Zhou, L. and Zhu, D.-Y. (2009). Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20: 223–230. https://doi.org/10.1016/j.niox.2009.03.001.10.1016/j.niox.2009.03.001Search in Google Scholar PubMed

Zhu, X., Hua, Y., Jiang, J., Zhou, Q., Luo, C., Han, X., Lu, Y. and Zhu, D. (2006). Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience 141: 827–836. https://doi.org/10.1016/j.neuroscience.2006.04.032.10.1016/j.neuroscience.2006.04.032Search in Google Scholar PubMed

Zochodne, D. W., Sun, H. and Li, X.-Q. (2001). Evidence that nitric oxide-and opioid-containing interneuron innervate vessels in the dorsal horn of the spinal cord of rats. J. Physiol. 532: 749. https://doi.org/10.1111/j.1469-7793.2001.0749e.x.10.1111/j.1469-7793.2001.0749e.xSearch in Google Scholar PubMed PubMed Central

Received: 2019-11-27
Accepted: 2020-03-21
Published Online: 2020-08-03
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0111/html
Scroll to top button