Screening of cytotoxic, anti-angiogenic, anti-tumorogenic and antimicrobial activities of Anatolian Vipera ammodytes (Nose-horned viper) venom

Naşit İğci 1 , Ayşe Nalbantsoy 2 , Leman Gizem Erkan 3 , Gözde Yılmaz Akça 3 , Hüsniye Tansel Yalçın 4 , Murat Yalçın 3  and Bayram Göçmen 5
  • 1 Faculty of Sciences and Arts, Nevşehir Hacı Bektaş Veli University – Department of Molecular Biology and Genetics, Nevşehir, Turkey
  • 2 Faculty of Engineering, Ege University – Department of Bioengineering, İzmir, Turkey
  • 3 Faculty of Veterinary Medicine, Uludağ University – Department of Physiology, Bursa, Turkey
  • 4 Faculty of Science, Ege University – Basic and Industrial Microbiology Section, Department of Biology, İzmir, Turkey
  • 5 Faculty of Science, Ege University – Zoology Section, Department of Biology, İzmir, Turkey
Naşit İğci, Ayşe Nalbantsoy, Leman Gizem Erkan, Gözde Yılmaz Akça, Hüsniye Tansel Yalçın, Murat Yalçın and Bayram Göçmen

Abstract

Objective:

In the present study, we aimed to screen the cytotoxic, antimicrobial, anti-angiogenic and anti-tumorogenic activities of Anatolian Vipera ammodytes (Nose-horned Viper) crude venom.

Material and methods:

The cytotoxicity was screened against PC3, HeLa, CaCo-2, U-87MG, MCF-7 and Vero cells by using MTT assay. The antimicrobial activity on Escherichia coli ATCC 25922, E. coli 0157:H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, Salmonella typhimirium CCM 5445, Proteus vulgaris ATCC 6957, Bacillus cereus ATCC 7064 and Candida albicans ATCC 10239 was assayed by determining the minimum inhibitory concentration using the broth dilution method. Anti-angiogenic and anti-tumorogenic activity was assessed by using chick chorioallantoic membrane (CAM) assay.

Results:

The IC50 value of V. ammodytes venom on cultured cells varied from 1.8 to 7.0 μg/mL after 48 h treatment. Venom showed antimicrobial activity on P. vulgaris, S. aureus, S. epidermidis, E. faecium and C. albicans (the highest activity). The venom exhibited dose-dependent anti-angiogenic activity on CAM model at 2 and 10 μg/mL doses with scores of 1.1 and 2.0, respectively.

Conclusion:

The results of the present study contributed to the knowledge of the biological activities of Anatolian V. ammodytes venom and showed its potential for further bioactivity guided characterization studies.

    • Supplementary material
  • 1.

    Calderon LA, Sobrinho JC, Zaqueo KD, de Moura AA, Grabner AN, Mazzi MV, et al. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BioMed Res Int 2014;2014:203639.

  • 2.

    Koh DC, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci 2006;63:3030–41.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, et al. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 2011;40:15–28.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Mackessy SP. The field of reptile toxinology: snakes, lizards, and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Florida: CRC Press Taylor & Francis Group, 2010:3–23.

  • 5.

    De Oliveira Junior NG, e Silva Cardoso MH, Franco OL. Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cell Mol Life Sci 2013;70:4645–58.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Göçmen B, Mebert K, İğci N, Akman B, Yıldız MZ, Oğuz MA, et al. New locality records for four rare species of vipers (Reptilia: Viperidae) in Turkey. Zool in the Middle East 2014;60:306–13.

    • Crossref
    • Export Citation
  • 7.

    Ursenbacher S, Schweiger S, Tomović L, Crnobrnja-Isailović J, Fumagalli L, Mayer W. Molecular phylogeography of the nose-horned viper (Vipera ammodytes (Linnaeus, 1758)): evidence for high genetic diversity and multiple refugia in the Balkan peninsula. Mol Phylogenet Evol 2008;46:1116–28.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Arikan H, Göçmen B, Kumlutaş Y, Alpagut-Keskin N, Ilgaz Ç, Yildizet M-Z. Electrophoretic characterisation of the venom samples obtained from various Anatolian snakes (Serpentes: Colubridae, Viperidae, Elapidae). North-West J Zool 2008;4:16–28.

  • 9.

    Yalcin HT, Ozen MO, Gocmen B, Nalbantsoy A. Effect of Ottoman viper (Montivipera xanthina (Gray, 1849)) venom on various cancer cells and on microorganisms. Cytotechnology 2014;66:87–94.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Igci N, Demiralp DO. A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky, 1832) from Southeastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Arch Toxicol 2012;86:441–51.

    • PubMed
    • Export Citation
  • 11.

    Nalbantsoy A, Baykan Erel S, Koksal C, Gocmen B, Yildiz MZ, Karabay Yavaşoğlu NÜ, et al. Viper venom induced inflammation with Montivipera xanthina (Gray, 1849) and the anti-snake venom activities of Artemisia absinthium L. in rat. Toxicon 2013;65:34–40.

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Ozen MO, İğci N, Yalçin HT, Goçmen B, Nalbantsoy A. Screening of cytotoxic and antimicrobial activity potential of Anatolian Macrovipera lebetina obtusa (Ophidia: Viperidae) crude venom. Front Life Sci 2015;8:363–370.

    • Crossref
    • Export Citation
  • 13.

    Göçmen B, Heiss P, Petras D, Nalbantsoy A, Süssmuth RD. Mass spectrometry guided venom profiling and bioactivity screening of the Anatolian Meadow Viper, Vipera anatolica. Toxicon 2015;107:163–74.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    Tare TG, Sutar NK, Renapurkar DM. A study of snake venom yield by different methods of venom extraction. Amphibia-Reptilia 1986;7:187–91.

    • Crossref
    • Export Citation
  • 15.

    Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Rebbaa A, Patil G, Yalcin M, Sudha T, Mousa SA. OT-404, multi-targeted anti-cancer agent affecting tumor proliferation, chemo-resistance, and angiogenesis. Cancer Lett 2013;332:55–62.

    • Crossref
    • PubMed
    • Export Citation
  • 18.

    Bürgermeister J, Paper DH, Vogl H, Linhardt RJ, Franz G. LaPSvS1, a (1→3)-β-galactan sulfate and its effect on angiogenesis in vivo and in vitro. Carbohydr Res 2002;337:1459–66.

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    Krenn L, Paper DH. Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine 2009;16:1083–88.

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Mousa S, Mousa SA. Cellular and molecular mechanisms of nicotine’s proangiogenesis activity and its potential impact on cancer. J Cell Biochem 2006;97:1370–8.

    • Crossref
    • Export Citation
  • 21.

    Mousa SA, Yalcin M, Bharali DJ, Meng R, Tang H-Y, Lin HY, et al. Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer 2012;76:39–45.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    CLSI (Clinical and Laboratory Standards Institute). Performance standards; for antimicrobial susceptibility testing, nineteenth informational supplement, 2009;(M100-S19).

  • 23.

    Araki S, Ishida T, Yamamoto T, Kaji K, Hayashi H. Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells. Biochem Biophys Res Commun 1993;190:148–53.

    • Crossref
    • PubMed
    • Export Citation
  • 24.

    Incerpi S, De Vito P, Luly P, Rufini S. Effect of ammodytin L from Vipera ammodytes on L-6 cells from rat skeletal muscle. Biochim Biophys Acta 1995;1268:137–42.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Leonardi A, Sajevic T, Kovačič L, Pungerčar J, Balija ML, Halassy B, et al. Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour activity. Toxicon 2014;77:141–55.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Rufini S, Cesaroni MP, Balestro N, Luly P. Proliferative effect of ammodytin L from the venom of Vipera ammodytes on 208F rat fibroblasts in culture. Biochem J 1996;320:467–72.

    • Crossref
    • PubMed
    • Export Citation
  • 27.

    Georgieva D, Risch M, Kardas A, Buck F, von Bergen M, Betzel C. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. J Prot Res 2008;7:866–86.

    • Crossref
    • Export Citation
  • 28.

    Jamunaa A, Vejayan J, Halijah I, Sharifah SH, Ambu S. Cytotoxicity of southeast Asian snake venoms. J Venom Anim Toxins incl Trop Dis 2012;18:150–6.

    • Crossref
    • Export Citation
  • 29.

    Nalbantsoy A, Karabay-Yavasoglu NU, Sayim F, Deliloglu-Gurhan I, Gocmen B, Arikan H, et al. Determination of in vivo toxicity and in vitro cytotoxicity of venom from Cypriot blunt-nosed viper Macrovipera lebetina lebetina and antivenom production. J Venom Anim Toxins incl Trop Dis 2012;18:208–16.

    • Crossref
    • Export Citation
  • 30.

    Samel M, Trummal K, Siigur E, Siigur J. Effect of HUVEC apoptosis inducing proteinase from Vipera lebetina venom (VLAIP) on viability of cancer cells and on platelet aggregation. Toxicon 2012;60:648–55.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    Tanjoni I, Weinlich R, Della-Casa MS, Clissa PB, Saldanha-Gama RF, de Freitas MS, et al. Jararhagin, a snake venom metalloproteinase, induces a specialized form of apoptosis (anoikis) selective to endothelial cells. Apoptosis 2005;10:851–61.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Gerl L, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis 2005;26:263–70.

    • PubMed
    • Export Citation
  • 33.

    Pilorget A, Conesa M, Sarray S, Michaud-Levesque J, Daoud S, Kim KS, et al. Lebectin, a Macrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo. J Cell Physiol 2007;211:307–15.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    Momic T, Cohen G, Reich R, Arlinghaus FT, Eble JA, Marcinkiewicz C, et al. Vixapatin (VP12), a c-type lectin-protein from Vipera xantina palestinae venom: characterization as a novel anti-angiogenic compound. Toxins 2012;4:862–77.

    • Crossref
    • PubMed
    • Export Citation
  • 35.

    Swenson S, Costa F, Ernst W, Fujii G, Markland FS. Contortrostatin, a snake venom disintegrin with anti-angiogenic and anti-tumor activity. Pathophysiol Haemost Thromb 2005;34:169–76.

    • Crossref
    • PubMed
    • Export Citation
  • 36.

    Yeh C-H, Peng H-C, Yang R-S, Huang T-F. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective αvβ3 blockade of endothelial cells. Mol Pharmacol 2001;59:1333–42.

    • Crossref
    • Export Citation
  • 37.

    Bazaa A, Pasquier E, Defilles C, Limam I, Kessentini-Zouari R, Kallech-Ziri O, et al. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS One 2010;5:e10124.

    • Crossref
    • PubMed
    • Export Citation
  • 38.

    Zhou Q, Sherwin RP, Parrish C, Richters V, Groshen SG, Tsao-Wei D, et al. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits breast cancer progression. Breast Cancer Res Treat 2000;61:249–60.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Markland FS, Shieh K, Zhou Q, Golubkov V, Sherwin R, Richters V, et al. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis 2001;31:183–91.

  • 40.

    Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 2014;17:471–94.

    • Crossref
    • PubMed
    • Export Citation
  • 41.

    Kuete V. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med 2010;76:1479–91.

    • Crossref
    • PubMed
    • Export Citation
  • 42.

    San TM, Vejayan J, Shanmugan K, Ibrahim H. Screening antimicrobial activity of venoms from snakes commonly found in Malaysia. J Appl Sci 2010;10:2328–32.

    • Crossref
    • Export Citation
  • 43.

    Samel M, Vija H, Kurvet I, Künnis-Beres K, Trummal K, Subbi J, et al. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins 2013;5:203–23.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Turkish Journal of Biochemistry (TJB), official journal of Turkish Biochemical Society, is issued electronically every 2 months. The main aim of the journal is to support the research and publishing culture by ensuring that every published manuscript has an added value and thus providing international acceptance of the “readability” of the manuscripts published in the journal.

Search