Computational assessment of SKA1 as a potential cancer biomarker

  • 1 Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara 06100, Turkey
Ceren SucularliORCID iD: https://orcid.org/0000-0003-0627-7900

Abstract

Background

Spindle and kinetochore associated complex subunit 1 (SKA1) is an essential component of SKA complex, which is required for the proper formation of kinetochore–microtubule attachment and timely mitotic progression. The aim of this study is to perform detailed analyses of SKA1 genomic and expression alterations in cancers and to assess SKA1 as a biomarker for predicting human cancers and patient prognosis.

Materials and methods

Missense mutations from human cancers were extracted, deleterious missense mutations were predicted and shown on 3D SKA1 protein. SKA1 expression and the effect of SKA1 expression on patient survival were investigated in human cancers.

Results and discussion

Most of the predicted deleterious mutations were detected on microtubule-binding domain of SKA1, suggesting mutations on microtubule-binding domain might be more relevant in human cancers. High SKA1 expression was detected in various cancers. In addition, patients with high SKA1 expression showed poor overall survival compared to patients with low SKA1 expression in breast, lung and gastric cancers.

Conclusion

These results suggest that high SKA1 expression might be a prognostic and predictive biomarker for several cancers and mainly mutations in the microtubule-binding domain of SKA1 might have a deleterious effect for SKA1.

  • 1.

    Abad MA, Medina B, Santamaria A, Zou J, Plasberg-Hill C, Madhumalar A, et al. Structural basis for microtubule recognition by the human kinetochore Ska complex. Nat Commun 2014;5:2964.

    • Crossref
    • PubMed
    • Export Citation
  • 2.

    Bhat KM, Setaluri V. Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 2007;13:2849–54.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    Tala, Xie S, Sun X, Sun X, Ran J, Zhang L, et al. Microtubule-associated protein Mdp3 promotes breast cancer growth and metastasis. Theranostics 2014;4:1052–61.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Zhang W, Mao JH, Zhu W, Jain AK, Liu K, Brown JB, et al. Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy. Nat Commun 2016;7:12619.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Jeyaprakash AA, Santamaria A, Jayachandran U, Chan YW, Benda C, Nigg EA, et al. Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol Cell 2012;46:274–86.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Walczak CE, Cai S, Khodjakov A. Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 2010;11:91–102.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Sivakumar S, Janczyk PL, Qu Q, Brautigam CA, Stukenberg PT, Yu H, et al. The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores. Elife 2016;5:e12902.

  • 8.

    Gaitanos TN, Santamaria A, Jeyaprakash AA, Wang B, Conti E, Nigg EA. Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J 2009;28:1442–52.

    • Crossref
    • PubMed
    • Export Citation
  • 9.

    Hanisch A, Sillje HH, Nigg EA. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J 2006;25:5504–15.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Schmidt JC, Arthanari H, Boeszoermenyi A, Dashkevich NM, Wilson-Kubalek EM, Monnier N, et al. The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev Cell 2012;23:968–80.

    • Crossref
    • PubMed
    • Export Citation
  • 11.

    Qin X, Yuan B, Xu X, Huang H, Liu Y. Effects of short interfering RNA-mediated gene silencing of SKA1 on proliferation of hepatocellular carcinoma cells. Scand J Gastroenterol 2013;48:1324–32.

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Sun W, Yao L, Jiang B, Guo L, Wang Q. Spindle and kinetochore-associated protein 1 is overexpressed in gastric cancer and modulates cell growth. Mol Cell Biochem 2014;391:167–74.

    • Crossref
    • PubMed
    • Export Citation
  • 13.

    Tian F, Xing X, Xu F, Cheng W, Zhang Z, Gao J, et al. Downregulation of SKA1 gene expression inhibits cell growth in human bladder cancer. Cancer Biother Radiopharm 2015;30:271–7.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    Zhang B, Li KY, Chen HY, Pan SD, Jiang LC, Wu YP, et al. Spindle and kinetochore associated complex subunit 1 regulates the proliferation of oral adenosquamous carcinoma CAL-27 cells in vitro. Cancer Cell Int 2013;13:83.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Shen L, Yang M, Lin Q, Zhang Z, Miao C, Zhu B. SKA1 regulates the metastasis and cisplatin resistance of non-small cell lung cancer. Oncol Rep 2016;35:2561–8.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 2017;45:D777–83.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 2014;10:e1003440.

    • Crossref
    • PubMed
    • Export Citation
  • 18.

    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res 2000;28:235–42.

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007;9:166–80.

    • Crossref
    • Export Citation
  • 21.

    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004;6:1–6.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330–7.

    • Crossref
    • PubMed
    • Export Citation
  • 23.

    Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.

    • Crossref
    • PubMed
    • Export Citation
  • 24.

    Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, et al. Gene expression patterns in human liver cancers. Mol Biol Cell 2002;13:1929–39.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    D’Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer 2009;45:461–9.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008;14:518–27.

    • Crossref
    • PubMed
    • Export Citation
  • 27.

    Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 2001;98:13784–9.

    • Crossref
    • Export Citation
  • 28.

    Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One 2010;5:e10312.

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 2005;11:5730–9.

    • Crossref
    • PubMed
    • Export Citation
  • 30.

    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006;9:391–403.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 2006;9:121–32.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, et al. Transcriptome profile of human colorectal adenomas. Mol Cancer Res 2007;5:1263–75.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 2007;7:55.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat 2010;123:725–31.

    • Crossref
    • PubMed
    • Export Citation
  • 35.

    Gyorffy B, Lanczky A, Szallasi Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer 2012;19:197–208.

    • Crossref
    • PubMed
    • Export Citation
  • 36.

    Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 2013;8:e82241.

    • Crossref
    • PubMed
    • Export Citation
  • 37.

    Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 2016;7:49322–33.

    • Crossref
    • PubMed
    • Export Citation
  • 38.

    Chan YW, Jeyaprakash AA, Nigg EA, Santamaria A. Aurora B controls kinetochore-microtubule attachments by inhibiting Ska complex-KMN network interaction. J Cell Biol 2012;196:563–71.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Nishi H, Tyagi M, Teng SL, Shoemaker BA, Hashimoto K, Alexov E, et al. Cancer missense mutations alter binding properties of proteins and their interaction networks. PLoS One 2013;8:e66273.

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Li J, Xuan JW, Khatamianfar V, Valiyeva F, Moussa M, Sadek A, et al. SKA1 over-expression promotes centriole over-duplication, centrosome amplification and prostate tumourigenesis. J Pathol 2014;234:178–89.

    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Turkish Journal of Biochemistry (TJB), official journal of Turkish Biochemical Society, is issued electronically every 2 months. The main aim of the journal is to support the research and publishing culture by ensuring that every published manuscript has an added value and thus providing international acceptance of the “readability” of the manuscripts published in the journal.

Search