A case–control study on effects of the ATM, RAD51 and TP73 genetic variants on colorectal cancer risk

Merve Yazici 1 , Umit Yilmaz 1 , 2 , Nesibe Yilmaz 1 , 3 , Faruk Celik 1 , Ece Gizem Isikoren 1 , Burcu Celikel 1 , Arzu Ergen 1 , Metin Keskin 4  and Umit Zeybekhttp://orcid.org/https://orcid.org/0000-0001-8403-2939 1
  • 1 Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
  • 2 Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
  • 3 Department of Anatomy, Faculty of Medicine, Inonu University, Malatya, Turkey
  • 4 Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
Merve Yazici
  • Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Umit Yilmaz
  • Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
  • Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Nesibe Yilmaz
  • Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
  • Department of Anatomy, Faculty of Medicine, Inonu University, Malatya, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Faruk Celik
  • Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ece Gizem Isikoren
  • Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Burcu Celikel
  • Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Arzu Ergen
  • Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Metin Keskin
  • Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Umit ZeybekORCID iD: https://orcid.org/0000-0001-8403-2939

Abstract

Aim

ATM, RAD51 and TP73 are genes that take part in DNA repair pathways. The aim of this prospective case-control study was to determine the genotype and allele distributions of the ATM 5′-UTR G/A, RAD51 135 G/C and TP73 GC/AT polymorphisms and their relationship with clinical parameters in Turkish colorectal cancer (CRC) patients.

Material and methods

One hundred and four CRC patients and 113 healthy individuals were included in this study as control. The polymerase chain reaction-restriction fragment length polymorphism techniques were used.

Results

The ATM 5′-UTR G/A polymorphism GG (p = 0.001) and AA (p = 0.0001) genotypes were found higher in the patient group, while the GA genotype (p = 0.0001) and A allele (p = 0.001) were significantly higher in the control group. Moreover, the GG genotype (p = 0.042) was higher among patients with advanced-stage cancer and, while GA genotype (p = 0.047) was increased in patients without perineural invasion. The RAD51 135 G/C polymorphism GC genotype (p = 0.0001) and C allele (p = 0.0001) were significantly higher in the patient group, while CC genotype (p = 0.0001) was higher in the control group. No statistical significance was observed between the TP73 GC/AT polymorphism genotype and allele distribution and the clinical parameters.

Conclusion

In the Turkish population, the ATM 5′-UTR GG and AA genotypes, and the RAD51 135 G/C GC genotype and the C allele presence may be risk factors for CRC.

  • 1.

    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–86.

    • Crossref
    • PubMed
    • Export Citation
  • 2.

    Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res 2014;181:111–30.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    Zhao ZL, Xia L, Zhao C, Yao J. ATM rs189037 (G>A) polymorphism increased the risk of cancer: an updated meta-analysis. BMC Med Genet 2019;20:28.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Gu Y, Shi J, Qiu S, Qiao Y, Zhang X, Cheng Y, et al. Association between ATM rs1801516 polymorphism and cancer susceptibility: a meta-analysis involving 12,879 cases and 18,054 controls. BMC Cancer 2018;18:1060.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Randon G, Fuca G, Rossini D, Raimondi A, Pagani F, Perrone F, et al. Prognostic impact of ATM mutations in patients with metastatic colorectal cancer. Sci Rep 2019;9:2858.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Vakiani E, Shah RH, Berger MF, Makohon-Moore AP, Reiter JG, Ostrovnaya I, et al. Local recurrences at the anastomotic area are clonally related to the primary tumor in sporadic colorectal carcinoma. Oncotarget 2017;8:42487–94.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Bhowmik A, Nath S, Das S, Ghosh SK, Choudhury Y. ATM rs189037 (G>A) polymorphism and risk of lung cancer and head and neck cancer: a meta-analysis. Meta Gene 2015;6:42–8.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Santos EM, Santos HB, de Matos FR, Machado RA, Coletta RD, Galvao HC, et al. Clinicopathological significance of SNPs in RAD51 and XRCC3 in oral and oropharyngeal carcinomas. Oral Dis 2019;25:54–63.

    • Crossref
    • PubMed
    • Export Citation
  • 9.

    Zeng X, Zhang Y, Yang L, Xu H, Zhang T, An R, et al. Association between RAD51 135 G/C polymorphism and risk of 3 common gynecological cancers: a meta-analysis. Medicine 2018;97:e11251.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Petrovic-Sunderic J, Dragicevic S, Krnjajic M, Ristanovic M, Nikolic A, Krivokapic Z. Polymorphism RAD51 172G>T in Serbian patients with colorectal cancer. J BUON 2018;23:936–40.

    • PubMed
    • Export Citation
  • 11.

    Gasinska A, Biesaga B, Widla AJ, Darasz Z. Positive effect of single nucleotide RAD51 135G>C polymorphism and low Ku70 protein expression on female rectal cancer patients survival after preoperative radiotherapy. Turk J 2019;30:3–14.

  • 12.

    Yazdanpanahi N, Salehi R, Kamali S. RAD51 135G>C polymorphism and risk of sporadic colorectal cancer in Iranian population. J Can Res Ther 2018;14:614–8.

    • Crossref
    • Export Citation
  • 13.

    Vagnini LD, Renzi A, Oliveira-Pelegrin GR, Canas Mdo C, Petersen CG, Mauri AL, et al. The TP73 gene polymorphism (rs4648551, A>G) is associated with diminished ovarian reserve. PloS One 2015;10:e0120048.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    Liang X, Chen B, Zhong J. Association of P73 polymorphisms with susceptibilities of cervical carcinoma: a meta-analysis. Oncotarget 2017;8:57409–13.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Ge L, Yang Y, Sun Y, Xu W, Lu D, Su B. P73 G4C14-to-A4T14 polymorphism is associated with survival in advanced non-small cell lung cancer patients. Thorac Cancer 2017;8:63–72.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Meng J, Wang S, Zhang M, Fan S, Zhang L, Liang C. TP73 G4C14-A4T14 polymorphism and cancer susceptibility: evidence from 36 case-control studies. Biosci Rep 2018;38: pii: BSR20181452.

    • PubMed
    • Export Citation
  • 17.

    Li W, Wang SS, Deng J, Tang JX. Association of p73 gene G4C14-A4T14 polymorphism and MDM2 gene SNP309 with non-small cell lung cancer risk in a Chinese population. Oncol Lett 2017;14:1817–22.

    • Crossref
    • Export Citation
  • 18.

    Wang S, Zhang Y, Chen M, Wang Y, Feng Y, Xu Z, et al. Association of genetic variants in ATR-CHEK1 and ATM-CHEK2 pathway genes with risk of colorectal cancer in a Chinese population. Oncotarget 2018;9:26616–24.

    • Crossref
    • Export Citation
  • 19.

    Wang CH, Wu KH, Yang YL, Peng CT, Tsai FJ, Lin DT, et al. Association between Ataxia Telangiectasia Mutated gene polymorphisms and childhood leukemia in Taiwan. Chinese J Physiol 2011;54:413–8.

  • 20.

    Wang HM, Shi YS, Li QS, Liu Y, Zheng XK. Association between single nucleotide polymorphism locus rs189037 in the promoter of ATM gene and nasopharyngeal carcinoma susceptibility in Cantonese. Nan Fang Yi Ke Da Xue Xue Bao 2011;31:1863–6.

    • PubMed
    • Export Citation
  • 21.

    Kang J, Deng XZ, Fan YB, Wu B. Relationships of FOXE1 and ATM genetic polymorphisms with papillary thyroid carcinoma risk: a meta-analysis. Tumour Biol 2014;35:7085–96.

    • Crossref
    • Export Citation
  • 22.

    Gu Y, Yu Y, Ai L, Shi J, Liu X, Sun H, et al. Association of the ATM gene polymorphisms with papillary thyroid cancer. Endocrine 2014;45:454–61.

    • Crossref
    • PubMed
    • Export Citation
  • 23.

    Marabelli M, Cheng SC, Parmigiani G. Penetrance of ATM gene mutations in breast cancer: a meta-analysis of different measures of risk. Genet Epidemiol 2016;40:425–31.

    • Crossref
    • PubMed
    • Export Citation
  • 24.

    Liu H, Liang Y, Liao H, Li L, Wang H. Association of p73 G4C14-to-A4T14 polymorphism with lung cancer risk. Tumour Biol 2014;35:9311–6.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Bau DT, Chang CH, Tsai MH, Chiu CF, Tsou YA, Wang RF, et al. Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility. Laryngoscope 2010;120: 2417–22.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Wang HC, Chang WS, Tsai RY, Tsai CW, Liu LC, Su CH, et al. Association between ataxia telangiectasia mutated gene polymorphisms and breast cancer in Taiwanese females. Anticancer Res 2010;30:5217–21.

    • PubMed
    • Export Citation
  • 27.

    Zhang BB, Wang DG, Xuan C, Sun GL, Deng KF. Genetic 135G/C polymorphism of RAD51 gene and risk of cancer: a meta- analysis of 28,956 cases and 28,372 controls. Fam Cancer 2014;13:515–26.

    • Crossref
    • Export Citation
  • 28.

    Cheng D, Shi H, Zhang K, Yi L, Zhen G. RAD51 Gene 135G/C polymorphism and the risk of four types of common cancers: a meta-analysis. Diagn Pathol 2014;9:18.

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Eskandari E, Rezaifar A, Hashemi M. XPG Asp1104His, XRCC2 Rs3218536 A/G and RAD51 135G/C gene polymorphisms and colorectal cancer risk: a meta-analysis. Asian Pac J Cancer Prev 2017;18:1805–13.

  • 30.

    Mucha B, Przybylowska-Sygut K, Dziki L, Dziki A, Sygut A, Majsterek I. Lack of association between the 135G/C RAD51 gene polymorphism and the risk of colorectal cancer among Polish population. Pol Przegl Chir 2012;84:358–62.

    • PubMed
    • Export Citation
  • 31.

    Krupa R, Sliwinski T, Wisniewska-Jarosinska M, Chojnacki J, Wasylecka M, Dziki L, et al. Polymorphisms in RAD51, XRCC2 and XRCC3 genes of the homologous recombination repair in colorectal cancer – a case control study. Mol Biol Rep 2011;38:2849–54.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Romanowicz-Makowska H, Samulak D, Michalska M, Sporny S, Langner E, Dziki A, et al. RAD51 gene polymorphisms and sporadic colorectal cancer risk in Poland. Pol J Pathol 2012;63:193–8.

    • PubMed
    • Export Citation
  • 33.

    Nissar S, Baba SM, Akhtar T, Rasool R, Shah ZA, Sameer AS. RAD51 G135C gene polymorphism and risk of colorectal cancer in Kashmir. Eur J Cancer Prev 2014;23:264–8.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    Cetinkunar S, Gok I, Celep RB, Ilhan D, Erdem H, Bilgin BC, et al. The effect of polymorphism in DNA repair genes RAD51 and XRCC2 in colorectal cancer in Turkish population. Int J Clin Exp Med 2015;8:2649–55.

    • PubMed
    • Export Citation
  • 35.

    Costanzo A, Pediconi N, Narcisi A, Guerrieri F, Belloni L, Fausti F, et al. TP63 and TP73 in cancer, an unresolved “family” puzzle of complexity, redundancy and hierarchy. FEBS Lett 2014;588:2590–9.

    • Crossref
    • PubMed
    • Export Citation
  • 36.

    Hu Y, Jiang L, Zheng J, You Y, Zhou Y, Jiao S. Association between the p73 exon 2 G4C14-to-A4T14 polymorphism and cancer risk: a meta-analysis. DNA Cell Biol 2012;31:230–7.

    • Crossref
    • Export Citation
  • 37.

    Pfeifer D, Arbman G, Sun XF. Polymorphism of the p73 gene in relation to colorectal cancer risk and survival. Carcinogenesis 2005;26:103–7.

    • PubMed
    • Export Citation
  • 38.

    Arfaoui AT, Kriaa LB, El Hadj Oel A, Ben Hmida MA, Khiari M, Khalfallah T, et al. Association of a p73 exon 2 GC/AT polymorphism with colorectal cancer risk and survival in Tunisian patients. Virchows Arch 2010;457:359–68.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Lee KE, Hong YS, Kim BG, Kim NY, Lee KM, Kwak JY, et al. p73 G4C14 to A4T14 polymorphism is associated with colorectal cancer risk and survival. World J Gastroenterol 2010;16:4448–54.

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Loof J, Pfeifer D, Adell G, Sun XF. Significance of an exon 2 G4C14-to-A4T14 polymorphism in the p73 gene on survival in rectal cancer patients with or without preoperative radiotherapy. Radiother Oncol 2009;92:215–20.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Turkish Journal of Biochemistry (TJB), official journal of Turkish Biochemical Society, is issued electronically every 2 months. The main aim of the journal is to support the research and publishing culture by ensuring that every published manuscript has an added value and thus providing international acceptance of the “readability” of the manuscripts published in the journal.

Search