Heterologous expression of a plant WRKY protein confers multiple stress tolerance in E. coli Bir bitkinin heterolog ifadesi WRKY proteini çoklu stres yaratır E. coli’de tolerans

  • 1 Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
  • 2 Department of Biochemistry and Biotechnology, The Women University, Multan, Pakistan
  • 3 Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
  • 4 Department of Biochemistry, Hazara University, Mansehra, Pakistan
  • 5 Bacha Khan University, Charsadda, Pakistan
Farah DeebaORCID iD: https://orcid.org/0000-0003-3833-9483
  • Corresponding author
  • Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
  • Department of Biochemistry and Biotechnology, The Women University, Multan, Pakistan, farahdiba31@gmail.com
  • orcid.org/0000-0003-3833-9483
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Tasawar Sultana
  • Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
  • Department of Biochemistry, Hazara University, Mansehra, Pakistan
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Nadia Majeed and Syed Muhammad Saqlan Naqvi
  • Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
  • Bacha Khan University, Charsadda, Pakistan
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Objective

OsWRKY71, a WRKY protein from rice, is reported to function during biotic stresses. It is requisite to further enquire the efficiency and mechanism of OsWRKY71 under various environmental stresses. Stress indicators such as salt, cold, heat, and drought were studied by overexpressing the OsWRKY71 in E. coli.

Materials and methods

DNA binding domain containing region of OsWRKY71 was cloned and expressed in E. coli followed by exposure to stress conditions. OsWRKY71 was also assessed for its role in abiotic stresses in rice by qPCR.

Results

Recombinant E. coli expressing OsWRKY71 was more tolerant to stresses such as heat, salt and drought in spot assay. The tolerance was further confirmed by monitoring the bacterial growth in liquid culture assay demonstrating that it encourages the E. coli growth under salt, drought, and heat stresses. This tolerance may be the consequence of OsWRKY71 interaction with the promoter of stress related genes or with other proteins in bacteria. The RT-qPCR analysis revealed the up-regulation of OsWRKY71 gene in rice upon interaction to cold, salt, drought and wounding with maximum up-regulation against salinity.

Conclusion

Thus, the defensive role of OsWRKY71 may accord to the development and survival of plants during different environmental stresses.

  • 1.

    Golldack D, Luking I, Yang O. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 2011;30:1383–91.

    • Crossref
    • PubMed
    • Export Citation
  • 2.

    Cheng Y, Zhou Y, Yang Y, Chi YJ, Zhou J, Chen JY, et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol 2012;159:810–25.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci 2010;15:247–58.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci 2000;5:199–206.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Ulker B, Somssich IE. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 2004;7:491–8.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Wu K-L, Guo Z-J, Wang H-H, Li J. The WRKY family of transcription factors in rice and arabidopsis and their origins. DNA Res 2005;12:9–26.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Xu X, Chen C, Fan B, Chen Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 2006;18:1310–26.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 2007;315:1098–103.

    • Crossref
    • PubMed
    • Export Citation
  • 9.

    Jiang C-J, Yoshida R, Shimono M, Inoue H, Sugano S, Hayashi N, et al. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice–magnaporthe grisea interaction. Mol Plant-Microbe Interact 2010;23:791–8.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Chujo T, Otake Y, Nojiri H, Miyamoto K, Yokotani N, Shimogawa T, et al. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol 2013;82:23–37.

    • Crossref
    • PubMed
    • Export Citation
  • 11.

    Delteil A, Blein M, Faivre-Rampant O, Guellim A, Estevan J, Hirsch J, et al. Building a mutant resource for the study of disease resistance in rice reveals the pivotal role of several genes involved in defence. Mol Plant Pathol 2012;13:72–82.

    • Crossref
    • Export Citation
  • 12.

    Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 2012;159:266–85.

    • Crossref
    • PubMed
    • Export Citation
  • 13.

    Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ, et al. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ 2013;36:757–74.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    Liu X, Bai X, Wang X, Chu C. OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 2007;164:969–79.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 2004;134:1500–13.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–80.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Bashir K, Khan NM, Rasheed S, Salim M. Indica rice varietal development in Pakistan: an overview. Paddy Water Environ 2007;5:73–81.

    • Crossref
    • Export Citation
  • 18.

    Yadav NS, Singh VK, Singh D, Jha B. A novel gene SbSI-2 encoding nuclear protein from a halophyte confers abiotic stress tolerance in E. coli and tobacco. PLoS One 2014;9:e101926.

    • Crossref
    • Export Citation
  • 19.

    Zheng H, Chen L, Han X, Zhao X, Ma Y. Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions. Agric Ecosyst Environ 2009;132:98–105.

    • Crossref
    • Export Citation
  • 20.

    Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 2008;67:169–81.

    • Crossref
    • PubMed
    • Export Citation
  • 21.

    Fang Y, Liao K, Du H, Xu Y, Song H, Li X, et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 2015;66:6803–17.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008;3:1101–8.

    • Crossref
    • Export Citation
  • 23.

    Mendes Pinto I, Rubinstein B, Kucharavy A, Unruh JR, Li R. Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis. Dev Cell 2012;22:1247–60.

    • Crossref
    • PubMed
    • Export Citation
  • 24.

    Guo XH, Jiang J, Wang BC, Li HY, Wang YC, Yang CP, et al. ThPOD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli. Mol Biol Rep 2010;37:1183–90.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, et al. Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Genet Genomics 2010;283:243–54.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Lan Y, Cai D, Zheng Y-Z. Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance. J Integr Plant Biol 2005;47:613–21.

    • Crossref
    • Export Citation
  • 27.

    Yamada A, Saitoh T, Mimura T, Ozeki Y. Expression of mangrove allene oxide cyclase enhances salt tolerance in escherichia coli, yeast, and tobacco cells. Plant Cell Physiol 2002;43:903–10.

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Gupta K, Agarwal PK, Reddy MK, Jha B. SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 2010;29:1131–7.

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Agarwal P, Dabi M, Agarwal PK. Molecular cloning and characterization of a group II WRKY transcription factor from Jatropha curcas, an important biofuel crop. DNA Cell Biol 2014;33:503–13.

    • Crossref
    • PubMed
    • Export Citation
  • 30.

    Chou AY, Archdeacon J, Kado CI. Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. Proc Natl Acad Sci U S A 1998;95:5293–8.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    Moreira D, Rodrı́guez-Valera F. A mitochondrial origin for eukaryotic C2H2 zinc finger regulators? Trends Microbiol 2000;8:448–9.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de los Santos B, Romero F, Pliego-Alfaro F, et al. Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. J Exp Bot 2009;60:3043–65.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, et al. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 2007;58:1999–2010.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    Marè C, Mazzucotelli E, Crosatti C, Francia E, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 2004;55:399–416.

    • Crossref
    • PubMed
    • Export Citation
  • 35.

    Li S, Fu Q, Huang W, Yu D. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 2009;28:683–93.

    • Crossref
    • PubMed
    • Export Citation
  • 36.

    Jiang Y, Guo L, Ma X, Zhao X, Jiao B, Li C, et al. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. Tree Physiol 2017;37:665–75.

    • Crossref
    • PubMed
    • Export Citation
  • 37.

    Wei W, Zhang Y, Han L, Guan Z, Chai T. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 2008;27:795–803.

    • Crossref
    • PubMed
    • Export Citation
  • 38.

    Liu Y, Zheng Y. PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 2005;331:325–32.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Lawrence JG. Shared strategies in gene organization among prokaryotes and eukaryotes. Cell 2002;110:407–13.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Turkish Journal of Biochemistry (TJB), official journal of Turkish Biochemical Society, is issued electronically every 2 months. The main aim of the journal is to support the research and publishing culture by ensuring that every published manuscript has an added value and thus providing international acceptance of the “readability” of the manuscripts published in the journal.

Search