Physio-biochemical analyses in seedlings of sorghum-sudangrass hybrids that are grown under salt stress under in vitro conditions

  • 1 Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Kırşehir Ahi Evran University, Kırşehir, Turkey
  • 2 Department of Field Crops, Faculty of Agriculture, Kırşehir Ahi Evran University, Kırşehir, Turkey
Ramazan BeyazORCID iD: https://orcid.org/0000-0003-4588-579X and Hakan KırORCID iD: https://orcid.org/0000-0002-3124-0491

Abstract

Objective

This study was conducted to analyze the physio-biochemical responses of two sorghum-sudangrass (Sorghum bicolor × Sorghum Sudanese Stapf.) hybrid (“Aneto” and “Sugar Graze”) seedlings exposed to salt stress.

Materials and methods

Sorghum-sudangrass hybrid seeds sown in MS medium containing 50 and 100 mM NaCl. The activity of antioxidant enzymes (SOD, CAT, GR, APX), chlorophyll (a, b, and total), malondialdehyde (MDA), and proline levels measured in 14 days old seedlings.

Results

As a result of the study, the activity of antioxidant enzymes (CAT, SOD, APX, and GR), malondialdehyde (MDA), proline and chlorophyll contents of seedlings of cv. “Aneto” increased. On the other hand, SOD activity, proline, and chlorophyll content increased while CAT, APX, GR activity, and malondialdehyde (MDA) content decreased in seedlings of cv. “Sugar graze”.

Conclusion

Overall, the results showed that the cv. “Aneto” was less affected by the adverse effects of salt stress than the cv. “Sugar graze”. This study is essential for revealing biochemical responses of 14 days old Sorghum-Sudanese hybrid seedlings against salt stress. These study findings can use in breeding programs for sorghum plants.

  • 1.

    Forghanı AH, Almodares A, Ehsanpour AA. Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Appl Biol Chem 2018;61:113–24.

    • Crossref
    • Export Citation
  • 2.

    Desokya ES, Merwadb AR, Rady MM. Natural biostimulants ımprove saline soil characteristics and salt stressed-sorghum performance. Commun Soil Sci Plant Anal 2018;49: 967–83.

    • Crossref
    • Export Citation
  • 3.

    Saddıqe Z, Javerıa S, Khalıd H, Farooq A. Effect of salt stress on growth and antioxidant enzymes in two cultivars of maize (Zea Mays L.). Pak J Bot 2016;48:1361–70.

  • 4.

    Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003;218:1–14.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Jha UC, Bohra A, Jha R, Parida SK. Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports 2019;38:255–77.

    • Crossref
    • Export Citation
  • 6.

    Cuartero J, Bolarin MC, Asins MJ, Moreno V. Increasing salt tolerance in the tomato. J Exp Bot 2006;57:1045–58.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Bybordı A. The ınfluence of salt stress on seed germination, growth and yield of canola cultivars. Not Bot Hort Agrobot Cluj 2010;38:128–33.

  • 8.

    Ashraf M. Effect of sodium chloride on water relations and some organic osmotica in arid zone plant species Melilotus indica (L.) All. Tropenlandwir 1993;94:95–102.

  • 9.

    Yang Z, Wang Y, Weı X, Zhao X, Wang B, Suı N. Transcription profiles of genes related to hormonal regulations under salt stress in sweet sorghum. Plant Mol Biol Rep 2017;35:586–99.

    • Crossref
    • Export Citation
  • 10.

    Ghaderı N, Hatamı M, Mozafarı A, Sıosehmardeh A. Change in antioxidant enzymes activity and some morphophysiological characteristics of strawberry under long-term salt stress. Physiol Mol Biol Plants 2018;24:833–43.

    • Crossref
    • Export Citation
  • 11.

    Uzal Ö. The effect of GA3 applications at different doses on lipidperoxidation, chlorophyll, and antioxidant enzyme activities in pepper plants under salt stress. Fresen Envıron Bull 2017;26:5283–8.

  • 12.

    Zhang H, Xu N, Wu X, Wang J, Ma S, Lı X, et al. Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. J Plant Interact 2018;13:506–13.

    • Crossref
    • Export Citation
  • 13.

    Reddy PS, Jogeswar G, Rasınenı GK, Maheswarı M, Reddy AR, Varshney RK, et al. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 2015;94:104–13.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    Chaugool J, Naıto H, Kasuga S, Ehara H. Comparison of young seedling growth and sodium distribution among sorghum plants under salt stress. Plant Prod Sci 2013;16:261–70.

    • Crossref
    • Export Citation
  • 15.

    Lacerdaa CF, Cambraıab J, Olıva MA, Ruız HA. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exper Bot 2005;54:69–76.

    • Crossref
    • Export Citation
  • 16.

    Yan K, Chen P, Shao H, Zhao S, Zhang L, Zhang L, et al. Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum. J Agronomy Crop Science 2013;198:218–26.

  • 17.

    Patane C, Saıta A, Sortıno O. Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. Agro Crop Sci 2013; 199:30–7.

    • Crossref
    • Export Citation
  • 18.

    Murashıge T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 1962;15:473–97.

    • Crossref
    • Export Citation
  • 19.

    Curtıs OF, Shetty K. Growth medium effects on vitrification, total phenolics, chlorophyll, and water content of in vitro propagated oregano clones. Acta Horticulture 1996;426:498–503.

  • 20.

    Lutts S, Kıne JM, Bouharmont J. NaCl-ınduced senesence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 1996;78:389–98.

    • Crossref
    • Export Citation
  • 21.

    Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil 1973;39:205–7.

    • Crossref
    • Export Citation
  • 22.

    Cakmak I, Marschner H. Magnesium defficiency and higlight ıntensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 1992;98:1222–6.

    • Crossref
    • Export Citation
  • 23.

    Çakmak I, Atlı M, Kaya R, Evliya H, Marschner H. Association of high light and zinc deficiency in cold-ınduced leaf chlorosis in grapefruit and mandarin trees. J Plant Physiol 1995;146: 355–60.

    • Crossref
    • Export Citation
  • 24.

    Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav 2012;7:1621–33.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Sundar D, Perıanayaguy B, Reddy R. Localization of antioxidant enzymes in the cellular compartments of sorghum Leaves. J Plant Growth Regul 2004;44:157–63.

    • Crossref
    • Export Citation
  • 26.

    Dugasa MT, Cao F, Ibrahim W, Wu F. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol Plant 2019;165: 134–43.

    • Crossref
    • PubMed
    • Export Citation
  • 27.

    Şen A, Alikamanoğlu S. Effect of salt stress on growth parameters and antioxidant enzymes of different wheat (Triticum Aestivum L.) varieties on ın vitro tissue culture. Fresen Envıron Bull 2011;20:489–95.

  • 28.

    Elsawy HI, Mekawy AM, Elhity MA, Abdel-Dayem SM, Abdelaziz MN, Assaha DV, et al. Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. Plant Physiol Biochem 2018;127:425–35.

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Kholova J, Saıram RK, Meena RC. Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiol Plant 2010;32:477–86.

    • Crossref
    • Export Citation
  • 30.

    Molazem D, Bashırzadeh A. Impact of salinity stress on proline reaction, peroxide activity, and antioxidant enzymes in maize (Zea mays L.). Pol J Environ Stud 2015;24: 597–603.

  • 31.

    Butt M, Ayyub CM, Amjad M, Ahmad R. Proline application enhances growth of chilli by ımproving physiological and biochemical attributes under salt stress. Pak J Agri Sci 2016;53:43–9.

  • 32.

    Bavei V, Shiran B, Arzani A. Evaluation of salinity tolerance in sorghum (Sorghum bicolor L.) using ion accumulation, proline and peroxidase criteria. Plant Growth Regul 2011;64:275–85.

    • Crossref
    • Export Citation
  • 33.

    Colmer TD, Fan TW, Higashi RM, Läuchli A. Interactive effects of Ca2 and NaCl salinity on the ionic relations and proline accumulation in the primary root tip of Sorghum bicolor. Physiol Plant 1996;97:421–4.

    • Crossref
    • Export Citation
  • 34.

    Luo M, Zhao Y, Zhang R, Su A, Li C, Xiangpeng W, et al. Effect of saline stress on the physiology and growth of maize hybrids and their related inbred lines. Maydica 2017;62:1–8.

  • 35.

    Wang Y, Jia D, Guo J, Zhang X, Guo C, Yang Z. Antioxidant metabolism variation associated with salt tolerance of six maize (Zea mays L.) cultivars. Acta Ecol Sin 2017;37:368–72.

    • Crossref
    • Export Citation
  • 36.

    Smırnoff N, Cumbes QT. Hydroxyl radicals scavenging activity of compatible isolates. Phytochemistry 1989;28:1057–60.

    • Crossref
    • Export Citation
  • 37.

    Demıral T, Turkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 2005;53:247–57.

    • Crossref
    • Export Citation
  • 38.

    Du F, Shi H, Zhang X, Xu X. Responses of reactive oxygen scavenging enzymes, proline and malondialdehyde to water deficits among six secondary successional seral species in loess plateau. Plos One 2014;9:1–6.

  • 39.

    Maswada HF, Djanaguiraman M, Prasad PV. Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J Agro Crop Sci 2018;204:577–87.

    • Crossref
    • Export Citation
  • 40.

    Shah SH, Houborg R, Mccabe M. Response of measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 2017;7:1–20.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Turkish Journal of Biochemistry (TJB), official journal of Turkish Biochemical Society, is issued electronically every 2 months. The main aim of the journal is to support the research and publishing culture by ensuring that every published manuscript has an added value and thus providing international acceptance of the “readability” of the manuscripts published in the journal.

Search