Crystal structure of the synthetic analogue of iwateite, Na2BaMn(PO4)2: an X-ray powder diffraction and Raman study

Gwilherm Nénert 1 , M. Mangir Murshed 2 , 3 , Teycir Ben Hamed 4 , Thorsten M. Gesing 2 , 3 , and Mongi Ben Amara 4
  • 1 Malvern Panalytical B. V., Lelyweg 1, Almelo, The Netherlands
  • 2 Institute of Inorganic Chemistry and Crystallography, Universität Bremen, FB02, Leobener Strasse /NW2, Bremen, Germany
  • 3 MAPEX Center for Materials and Processes, Bibliothekstrasse 1, Bremen, Germany
  • 4 UR: Matériaux Inorganiques, Faculté des Sciences, 5019, Monastir, Tunisia
Gwilherm Nénert, M. Mangir Murshed
  • Institute of Inorganic Chemistry and Crystallography, Universität Bremen, FB02, Leobener Strasse /NW2, D-28359, Bremen, Germany
  • MAPEX Center for Materials and Processes, Bibliothekstrasse 1, D-28359, Bremen, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Teycir Ben Hamed, Thorsten M. Gesing
  • Institute of Inorganic Chemistry and Crystallography, Universität Bremen, FB02, Leobener Strasse /NW2, D-28359, Bremen, Germany
  • MAPEX Center for Materials and Processes, Bibliothekstrasse 1, D-28359, Bremen, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Mongi Ben Amara

Abstract

We have investigated the crystal structure of the synthetic analogue of the mineral iwateite using powder diffraction and Raman spectroscopy. Na2BaMn(PO4)2 crystallizes in the space group P3m1 (No. 164) with cell parameters a = 5.37292(1) Å, and c = 7.09538(1) Å (Rwp = 5.7%, V = 177.38 Å3, Z = 1). The space group assignment is supported by the experimentally observed 11 Raman active modes which agree with the expected number of modes for the P3m1 symmetry.

  • 1.

    Nishio-Hamane, D., Minakawa, T., Okada, H. Iwateite, Na2BaMn(PO4)2, a new mineral from the Tanohata mine, Iwate Prefecture, Japan. J. Mineral. Petrol. Sci. 2014, 109, 34–37. https://doi.org/10.2465/jmps.131020a.

    • Crossref
    • Export Citation
  • 2.

    Okada, K., Ossaka, J. Structures of potassium sodium sulphate and tripotassium sodium disulphate. Acta Cryst. B 1980, 36, 919–921. https://doi.org/10.1107/s0567740880004852.

    • Crossref
    • Export Citation
  • 3.

    Berg, R. W., Boghosian, S., Bjerrum, N. J., Fehrmann, R., Krebs, B., Strater, N., Mortensen, O. S., Papatheodorou, G. N. Crystal structure and spectroscopic characterization of CsV(SO4)2. Evidence for an electronic Raman transition. Inorg. Chem. 1993, 32, 4714–4720. https://doi.org/10.1021/ic00074a012.

    • Crossref
    • Export Citation
  • 4.

    Murashko, M. N., Pekov, I. V., Krivovichev, S. V., Chernyatyeva, A. P., Yapaskurt, V. O., Zadov, A. E., Zelensky, M. E. Steklite, KAl(SO4)2: a finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geol. Ore Deposits 2013, 55, 594–600. https://doi.org/10.1134/s1075701513070088.

    • Crossref
    • Export Citation
  • 5.

    Boukhris, A., Hidouri, M., Glorieux, B., Ben Amara, M. Correlation between structure and photoluminescence of the europium doped glaserite-type phosphate Na2SrMg(PO4)2. Mater. Chem. Phys. 2012, 137, 26–33. https://doi.org/10.1016/j.matchemphys.2012.07.002.

    • Crossref
    • Export Citation
  • 6.

    Boukhris, A., Hidouri, M., Glorieux, B., Ben Amara, M. Na2BaMg(PO4)2: synthesis, crystal structure and europium photoluminescence properties. J. Rare Earths 2013, 31, 849–856. https://doi.org/10.1016/s1002-0721(12)60369-x.

    • Crossref
    • Export Citation
  • 7.

    Lu, J., Du, F., Zhu, R., Huang, Y., Jin Seo, H. Phase formations and tunable red luminescence of Na2CaMg1−xMnx(PO4)2 (x = 0.05–1.0). J. Mater. Chem. 2011, 21, 16398–16405. https://doi.org/10.1039/c1jm12854j.

    • Crossref
    • Export Citation
  • 8.

    Yonesaki, Y., Matsuda, C. Crystal structure of Na2MMgP2O8 (M: Ba,Sr,Ca) orthophosphates and their luminescence properties activated by Eu2+; analogous structural behaviors of glaserite-type phosphates and silicates. J. Solid State Chem. 2011, 184, 3247–3252. https://doi.org/10.1016/j.jssc.2011.10.011.

    • Crossref
    • Export Citation
  • 9.

    Yonesaki, Y., Matsuda, C., Dong, Q. Structural consideration on the emission properties of Eu2+-doped Li2BaMgP2O8 and Na2BaMgP2O8 orthophosphates. J. Solid State Chem. 2012, 196, 404–408. https://doi.org/10.1016/j.jssc.2012.07.001.

    • Crossref
    • Export Citation
  • 10.

    Zhou, J., Xia, Z. Synthesis, luminescence properties and energy transfer behavior of Na2CaMg(PO4)2:Eu2+, Mn2+ phosphors. J. Lumin. 2014, 146, 22–26. https://doi.org/10.1016/j.jlumin.2013.09.031.

    • Crossref
    • Export Citation
  • 11.

    Fuchs, L. H., Olsen, E., Henderson, E. P. On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. Cosmochim. Acta 1967, 31, 1711–1719. https://doi.org/10.1016/0016-7037(67)90118-4.

    • Crossref
    • Export Citation
  • 12.

    Moore, P. B. Brianite, Na2CaMg(PO4)2: a phosphate analog of Merwinite, Ca2CaMg(SiO4)2. Am. Mineral. 1975, 60, 717–718.

  • 13.

    Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. The HighScore suite. Powder Diffract. 2014, 29, S13–S18. https://doi.org/10.1017/s0885715614000840.

    • Crossref
    • Export Citation
  • 14.

    Dollase, W. A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 1986, 19, 267–272. https://doi.org/10.1107/s0021889886089458.

    • Crossref
    • Export Citation
  • 15.

    March, A. Mathematische Theorie der Regelung nach der Korngestah bei affiner Deformation. Z. Kristallogr. 1932, 81, 285–297. https://doi.org/10.1524/zkri.1932.81.1.285.

  • 16.

    Momma, K., Izumi, F. VESTA 3 for three‐dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. https://doi.org/10.1107/s0021889811038970.

    • Crossref
    • Export Citation
  • 17.

    Nespolo, M, Guillot, B. CHARDI2015: charge distribution analysis of non-molecular structures. J. Appl. Cryst. 2016, 49, 317–321. https://doi.org/10.1107/s1600576715024814.

    • Crossref
    • Export Citation
  • 18.

    Nespolo, M. Charge distribution as a tool to investigate structural details. IV. A new route to heteroligand polyhedra. Acta Cryst. B 2016, 72, 51–66. https://doi.org/10.1107/s2052520615019472.

    • Crossref
    • Export Citation
  • 19.

    Park, C.-H., Kim, T.-H., Yonesaki, Y., Kumada, N. A re-investigation of the crystal structure and luminescence of BaCa2MgSi2O8:Eu2+. J. Solid State Chem. 2011, 184, 1566–1570. https://doi.org/10.1016/j.jssc.2011.04.030.

    • Crossref
    • Export Citation
  • 20.

    Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., Wondratschek, H. Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Trans. Multinational J. 2003, 76, 155–170. https://doi.org/10.1080/0141159031000076110.

    • Crossref
    • Export Citation
  • 21.

    Henderson, G. S., Neuville, D. R., Downs, R. T. Reviews in mineralogy and geochemistry. In Spectroscopic methods in mineralogy and materials sciences, Vol. 78, 2014.

  • 22.

    Litasov, K. D., Podgornykh, N. M. Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectrosc. 2017, 48, 1518–1527. https://doi.org/10.1002/jrs.5119.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search