Water soluble biguanide salts and their 1,3,5-triazine derivatives as inhibitors of acetylcholinesterase and α-glucosidase

Ozge Gungor 1 , Seda Nur Kertmen Kurtar 2 , and Muhammet Kose 1
  • 1 Chemistry Department, Kahramanmaras Sutcu Imam University, 46050, Kahramanmaras, Turkey
  • 2 Material Science and Engineering Department, Kahramanmaras Sutcu Imam University, 46050, Kahramanmaras, Turkey
Ozge Gungor
  • Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46050, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Seda Nur Kertmen Kurtar
  • Material Science and Engineering Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46050, Turkey
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Muhammet Kose
  • Corresponding author
  • Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46050, Turkey
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Seven biguanide derivatives were prepared by the nucleophilic reaction between dicyandiamide and p-substitute aniline derivatives or memantine or adamantine under acidic conditions. The cyclization of the biguanide compounds were also conducted via acetone to give 1,3,5-triazine derivatives. The structures of the synthesized compounds were characterized by analytical methods. The solid state structures of [HL5]Cl, [H2L7]Cl2, [HL1a]Cl and [HL5a]Cl were investigated by X-ray diffraction study. The acetylcholinesterase and α-glucosidase inhibitor properties of the compounds were then evaluated by the spectroscopic method. The compounds were found to show considerable acetylcholinesterase and α-glucosidase inhibitory activities compared to the approved drugs. The cyclization of biguanide derivatives with acetone did not affect inhibition of acetylcholinesterase, yet increased the α-glucosidase inhibition.

  • 1.

    Oliveira, C., Bagetta, D., Cagide, F., Teixeira, J., Amorim, R., Silva, T., Garrido, J., Remi, F., Uriarte, E., Oliveira, P. J., Alcaro, S., Ortuso, F., Alcaro, S. Benzoic acid-derived nitrones: a new class of potential acetylcholinesterase inhibitors and neuroprotective agents. Eur. J. Med. Chem. 2019, 174, 116; https://doi.org/10.1016/j.ejmech.2019.04.026.

    • Crossref
    • PubMed
    • Export Citation
  • 2.

    Santos, T.-C.-D., Gomes, T. M., Pinto, B. A. S., Camara, A. L., Paes, A. M. D. A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol. 2018, 9, 1192; https://doi.org/10.3389/fphar.2018.01192.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    Song, Q., Li, Y., Cao, Z., Qiang, X., Tan, Z., Deng, Y. Novel salicylamide derivatives as potent multifunctional agents for the treatment of Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg. Chem. 2019, 84, 137; https://doi.org/10.1016/j.bioorg.2018.11.022.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Chigurupati, S., Selvaraj, M., Mani, V., Selvarajan, K. K., Mohammad, J. I., Kaveti, B., Bera, H., Palanimuthu, V. R., Teh, L. K., Salleh, M. Z. Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. Bioorg. Chem. 2016, 67, 9–17; https://doi.org/10.1016/j.bioorg.2016.05.002.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Bhaskar, V., Chowdary, R., Dixit, S. R., Joshi, S. D. Synthesis, molecular modeling and BACE-1 inhibitory study of tetrahydrobenzo [b] pyran derivatives. Bioorg. Chem. 2019, 84, 202; https://doi.org/10.1016/j.bioorg.2018.11.023.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Si, W., Zhang, T., Zhang, L., Mei, X., Dong, M., Zhang, K., Ning, J. Design, synthesis and bioactivity of novel phthalimide derivatives as acetylcholinesterase inhibitors. Bioorg. & Med. Chem. Lett. 2016, 26, 2380; https://doi.org/10.1016/j.bmcl.2015.07.052.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Więckowska, A., Kołaczkowski, M., Bucki, A., Godyń, J., Marcinkowska, M., Więckowski, K., Wieckowski, K., Zareba, P., Siwek, A., Kazek, G., Głuch-Lutwin, M., Mierzejewski, P., Bienkowski, P., Sienkiewicz-Jarosz, H., Knez, D., Wichur, T., Gobec, S., Mierzejewski, P. Novel multi-target-directed ligands for Alzheimer’s disease: combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2016, 124, 63; https://doi.org/10.1016/j.ejmech.2016.08.016.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Turkan, F., Cetin, A., Taslimi, P., Karaman, M., Gulçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem. 2019, 86, 420–427; https://doi.org/10.1016/j.bioorg.2019.02.013.

    • Crossref
    • PubMed
    • Export Citation
  • 9.

    Sonmez, F., Zengin Kurt, B., Gazioglu, I., Basile, L., Dag, A., Cappello, V., Ginex, T., Kucukislamoglu Guccione, M., Design, S. Synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 285; https://doi.org/10.1080/14756366.2016.1250753.

    • Crossref
    • Export Citation
  • 10.

    Mumtaz, A., Majeed, A., Zaib, S., Rahman, S. U., Hameed, S., Saeed, A., Rafiqued, H., Mughald, E., Maalike, A., Hussainf, I., Iqbal, J. Investigation of potent inhibitors of cholinesterase based on thiourea and pyrazoline derivatives: Synthesis, inhibition assay and molecular modeling studies. Bioorg. Chem. 2019, 90, 103036; https://doi.org/10.1016/j.bioorg.2019.103036.

    • Crossref
    • PubMed
    • Export Citation
  • 11.

    Pisani, L., Catto, M., De Palma, A., Farina, R., Cellamare, S., Altomare, C. D. Discovery of potent dual binding site acetylcholinesterase inhibitors via homo-and heterodimerization of coumarin-based moieties. ChemMedChem 2017, 12, 1349; https://doi.org/10.1002/cmdc.201700282.

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Mahdavi, M., Saeedi, M., Gholamnia, L., Jeddi, S. A. B., Sabourian, R., Shafiee, A., Foroumadi, A., Akbarzadeh, T. Synthesis of novel tacrine analogs as acetylcholinesterase inhibitors. J. Heterocycl. Chem. 2017, 54, 384; https://doi.org/10.1002/jhet.2594.

    • Crossref
    • Export Citation
  • 13.

    Kumar, J., Gill, A., Shaikh, M., Singh, A., Shandilya, A., Jameel, E., Sharma, N., Mrinal, N., Hoda, N., Jayaram, B. Pyrimidine-triazolopyrimidine and pyrimidine-pyridine hybrids as potential acetylcholinesterase inhibitors for alzheimer’s disease. Chem. Scr. 2018, 3, 736; https://doi.org/10.1002/slct.201702599.

  • 14.

    Kumar, K., Kumar, A., Keegan, R. M., Deshmukh, R. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed. Pharmacother. 2018, 98, 297; https://doi.org/10.1016/j.biopha.2017.12.053.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Yiğit, B., Yiğit, M., Barut Celepci, D., Gök, Y., Aktaş, A., Aygün, M., Taslimi, P., Gülçin, İ. Novel benzylic substituted imidazolinium, tetrahydropyrimidinium and tetrahydrodiazepinium salts: potent carbonic anhydrase and acetylcholinesterase inhibitors. Chem. Sel. 2018, 3, 7976; https://doi.org/10.1002/slct.201801019.

  • 16.

    Poovitha, S., Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med. 2016, 16, 1; https://doi.org/10.1186/s12906-016-1085-1.

  • 17.

    Adib, M., Peytam, F., Rahmanian-Jazi, M., Mahernia, S., Bijanzadeh, H.R., Jahani, M., Mohammadi-Khanaposhtani, M., Imanparast, S., Faramarzi, M. A., Mahdavi, M., Larijani, B. New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: A simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. Eur. J. Med. Chem. 2018, 155, 353; https://doi.org/10.1016/j.ejmech.2018.05.046.

    • Crossref
    • PubMed
    • Export Citation
  • 18.

    Kathuria, D., Bankar, A. A., Bharatam, P. V. “What’s in a structure?” The story of biguanides. J. Mol. Struct. 2018, 1152, 61; https://doi.org/10.1016/j.molstruc.2017.08.100.

    • Crossref
    • Export Citation
  • 19.

    Slotta, K. H., Tschesche, R., Biguanide, ÜII. Die blutzucker-senkende Wirkung der Biguanide. Berichte Detsch. Chem. Ges. (A and B Ser.) 1929, 62, 1398; https://doi.org/10.1002/cber.19290620605.

    • Crossref
    • Export Citation
  • 20.

    Higurashi, T., Hosono, K., Takahashi, H., Komiya, Y., Umezawa, S., Sakai, E., Uchiyama, T., Taniguchi, L., Hata, Y., Uchiyama, S., Hattori, A., Nagase, H., Kessoku, T., Arimoto, J., Matsuhashi, N., Inayama, Y., Yamanaka, S., Taguri, M., Hattori, A. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: a multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol. 2016, 17, 475; https://doi.org/10.1016/s1470-2045(15)00565-3.

    • Crossref
    • PubMed
    • Export Citation
  • 21.

    Markowicz-Piasecka, M., Sikora, J., Mateusiak, Ł., Mikiciuk-Olasik, E., Huttunen, K. M. Metformin and its sulfenamide prodrugs inhibit human cholinesterase activity. Oxid. Med. Cell. Longev. 2017, 2017, 7303096; https://doi.org/10.1155/2017/7303096.

    • PubMed
    • Export Citation
  • 22.

    Markowicz-Piasecka, M., Sikora, J., Mateusiak, Ł., Mikiciuk-Olasik, E., Huttunen, K. M. Metformin–a future therapy for neurodegenerative diseases. Pharm. Res. 2017, 34, 2614; https://doi.org/10.1007/s11095-017-2199-y.

  • 23.

    Rotermund, C., Machetanz, G., Fitzgerald, J. C. The therapeutic potential of metformin in neurodegenerative diseases. Front. Endocrinol. 2018, 9, 400; https://doi.org/10.3389/fendo.2018.00400.

    • Crossref
    • Export Citation
  • 24.

    APEX and SAINT. Area Detector Control & Integration Software; SADABS, Program for Scaling and Correction of Area Detector Data; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.

  • 25.a)

    Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3; https://doi.org/10.1107/s2053273314026370.

  • 25.b)

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3; https://doi.org/10.1107/s2053229614024218.

  • 26.

    Werner, E., Bell, J. The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively. J. Chem. Soc. Trans. 1922, 121, 1790; https://doi.org/10.1039/ct9222101790.

    • Crossref
    • Export Citation
  • 27.

    Ma, X., Poon, T. Y., Wong, P. T. H., Chui, W. K. Synthesis and in vitro evaluation of 2, 4-diamino-1, 3, 5-triazine derivatives as neuronal voltage-gated sodium channel blockers. Bioorg. & Med. Chem. Lett. 2009, 19, 5644; https://doi.org/10.1016/j.bmcl.2009.08.052.

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Ellman, G. L., Courtney, K. D., Andres, V., Feather-Stone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88; https://doi.org/10.1016/0006-2952(61)90145-9.

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Jabeen, F., Oliferenko, P. V., Oliferenko, A. A., Pillai, G. G., Ansari, F. L., Hall, C. D., Katritzky, A. R. Dual inhibition of the α-glucosidase and butyrylcholinesterase studied by Molecular Field Topology Analysis. Eur. J. Med. Chem. 2014, 80, 228; https://doi.org/10.1016/j.ejmech.2014.04.018.

    • Crossref
    • PubMed
    • Export Citation
  • 30.

    Mohsen, U. A., Kaymakcıoglu, B. K., Oruc-Emre, E. E., Kaplanc ıklı, Z. A., Rollas, S. Studies on hydrazideehydrazones derivatives as acetylcholinesterase inhibitors. Musbed 2015, 1, 10.

  • 31.

    Karaman, N., Sıcak, Y., Tok, T. T., Oztürk, M., Iyidogan, A. K., Dikmen, M., Kaymakçıoglu, €. B. K., Oruç-Emre, E. E. New piperidine-hydrazone derivatives: synthesis, biological evaluations and molecular docking studies as AChE and BChE inhibitors. Eur. J. Med. Chem. 2016, 124, 270; https://doi.org/10.1016/j.ejmech.2016.08.037.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Alonso, D., Dorronsoro, I., Rubio, L., Munoz, P., García-Palomero, E., Del Monte, M., Bidon-Chanal, A., Orozco, M., Luque, F. J., Castro, A., Medina, M. Donepezil–tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg. & Med. Chem. 2005, 13, 6588; https://doi.org/10.1016/j.bmc.2005.09.029.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Peytam, F., Adib, M., Shourgeshty, R., Firoozpour, L., Rahmanian-Jazi, M., Jahani, M., Safari, F. An efficient and targeted synthetic approach towards new highly substituted 6-amino-pyrazolo [1, 5-a] pyrimidines with α-glucosidase inhibitory activity. Sci. Rep. 2020, 10, 1; https://doi.org/10.1038/s41598-020-59079-z.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search