Attractive halogen···halogen interactions in crystal structure of trans-dibromogold(III) complex

Alexander G. Tskhovrebov 1 , 2 , Alexander S. Novikov 3 , Andreii S. Kritchenkov 2 , Victor N. Khrustalev 2 , 5 , and Matti Haukka 4
  • 1 N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation
  • 2 Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, Russian Federation
  • 3 Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, Russian Federation
  • 4 Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, Finland
  • 5 N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow, Russian Federation
Alexander G. Tskhovrebov
  • Corresponding author
  • N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation
  • Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, Russian Federation
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Alexander S. Novikov
  • Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, Russian Federation
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Andreii S. Kritchenkov
  • Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, Russian Federation
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Victor N. Khrustalev
  • Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, Russian Federation
  • N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow, Russian Federation
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Matti Haukka
  • Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, Finland
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

A synthesis of the trans-dibromogold(III) t-Bu-Xantphos complex and its self-assembly into infinite 1-dimensional chain in the solid state is reported. The new complex characterized using elemental analyses (C, H, N), ESI-MS, 1H and 13C NMR techniques and X-ray diffraction analysis. Results of DFT calculations followed by the topological analysis of the electron density distribution within the framework of QTAIM method at the ωB97XD/DZP-DKH level of theory reveal that strength of attractive intermolecular non-covalent interactions Br···Br in the crystal is 1.2–1.6 kcal/mol.

  • 1.

    Adonin, S. A., Gorokh, I. D., Samsonenko, D. G., Novikov, A. S., Korolkov, I. V., Plyusnin, P. E., Sokolov, M. N., Fedin, V. P. Binuclear and polymeric bromobismuthate complexes: crystal structures and thermal stability. Polyhedron 2019, 159, 318–322. https://doi.org/10.1016/j.poly.2018.12.017.

    • Crossref
    • Export Citation
  • 2.

    Adonin, S. A., Bondarenko, M. A., Abramov, P. A., Novikov, A. S., Plyusnin, P. E., Sokolov, M. N., Fedin, V. P. Bromo- and polybromoantimonates(V): structural and theoretical studies of hybrid halogen-rich halometalate frameworks. Chemistry 2018, 24, 10165–10170. https://doi.org/10.1002/chem.201801338.

    • Crossref
    • Export Citation
  • 3.

    Saha, A., Rather, S. A., Sharada, D., Saha, B. K. C-X···X-C vs C-H···X-C, which one is the more dominant interaction in crystal packing (X = Halogen)?. Cryst. Growth Des. 2018, 18, 6084–6090. https://doi.org/10.1021/acs.cgd.8b00955.

    • Crossref
    • Export Citation
  • 4.

    Usoltsev, A. N., Adonin, S. A., Novikov, A. S., Samsonenko, D. G., Sokolov, M. N., Fedin, V. P. One-dimensional polymeric polybromotellurates(IV): structural and theoretical insights into halogen⋯halogen contacts. CrystEngComm 2017, 19, 5934–5939. https://doi.org/10.1039/c7ce01487b.

    • Crossref
    • Export Citation
  • 5.

    Adonin, S. A., Gorokh, I. D., Novikov, A. S., Abramov, P. A., Sokolov, M. N., Fedin, V. P. Halogen contacts-induced unusual coloring in BiIII bromide complex: anion-to-cation charge transfer via Br⋅⋅⋅Br interactions. Chemistry 2017, 23, 15612–15616. https://doi.org/10.1002/chem.201703747.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Nguyen, H. L., Horton, P. N., Hursthouse, M. B., Legon, A. C., Bruce, D. W. Halogen bonding: a new interaction for liquid crystal formation. J. Am. Chem. Soc. 2004, 126, 16–17. https://doi.org/10.1021/ja036994l.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Metrangolo, P., Resnati, G. Chemistry: halogen versus hydrogen. Science 2008, 321, 918–919. https://doi.org/10.1126/science.1162215.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Cariati, E., Cavallo, G., Forni, A., Leem, G., Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Righetto, S., Terraneo, G., Tordin, E. Self-complementary nonlinear optical-phores targeted to halogen bond-driven self-assembly of electro-optic materials. Cryst. Growth Des. 2011, 11, 5642–5648. https://doi.org/10.1021/cg201194a.

    • Crossref
    • Export Citation
  • 9.

    Sun, A., Lauher, J. W., Goroff, N. S. Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 2006, 312, 1030–1034. https://doi.org/10.1126/science.1124621.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Yang, L., Tan, X., Wang, Z., Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239. https://doi.org/10.1021/cr500633b.

    • Crossref
    • PubMed
    • Export Citation
  • 11.

    Walsh, R. B., Padgett, C. W., Metrangolo, P., Resnati, G., Hanks, T. W., Pennington, W. T. Crystal engineering through halogen bonding: complexes of nitrogen heterocycles with organic iodides. Cryst. Growth Des. 2001, 1, 165–175. https://doi.org/10.1021/cg005540m.

    • Crossref
    • Export Citation
  • 12.

    Saha, B. K., Rather, S. A., Saha, A. Interhalogen interactions in the light of geometrical correction. Cryst. Growth Des. 2016, 16, 3059–3062. https://doi.org/10.1021/acs.cgd.6b00338.

    • Crossref
    • Export Citation
  • 13.

    Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R., Espinosa, E. The nature of halogen halogen interactions: a model derived from experimental charge-density analysis. Angew. Chem. Int. Ed. 2009, 48, 3838–3841. https://doi.org/10.1002/anie.200805739.

    • Crossref
    • Export Citation
  • 14.

    Adonin, S. A., Udalova, L. I., Abramov, P. A., Novikov, A. S., Yushina, I. V., Korolkov, I. V., Semitut, E. Y., Derzhavskaya, T. A., Stevenson, K. J., Troshin, P. A., Sokolov, M. N., Fedin, V. P. A novel family of polyiodo-bromoantimonate(III) complexes: cation-driven self-assembly of photoconductive metal-polyhalide frameworks. Chemistry 2018, 24, 14707–14711. https://doi.org/10.1002/chem.201802100.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A., Tskhovrebov, A. G. Lasagna-like supramolecular polymers derived from the PdII osazone complexes via C(Sp2)–H⋯Hal hydrogen bonding. Inorg. Chim. Acta 2020, 502. https://doi.org/10.1016/j.ica.2019.119378.

  • 16.

    Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V., Starova, G. L. Supramolecular polymers derived from the PtII and PdII schiff base complexes via C(Sp2)–H … Hal hydrogen bonding: combined experimental and theoretical study. J. Organomet. Chem. 2019, 886, 71–75. https://doi.org/10.1016/j.jorganchem.2019.01.023.

    • Crossref
    • Export Citation
  • 17.

    Tskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N., Haukka, M. Palladium(II)-stabilized pyridine-2-diazotates: synthesis, structural characterization, and cytotoxicity studies. Inorg. Chem. 2018, 57, 930–934. https://doi.org/10.1021/acs.inorgchem.8b00072.

    • Crossref
    • PubMed
    • Export Citation
  • 18.

    Mikhaylov, V. N., Sorokoumov, V. N., Liakhov, D. M., Tskhovrebov, A. G., Balova, I. A. Polystyrene-supported acyclic diaminocarbene palladium complexes in Sonogashira cross-coupling: stability vs. catalytic activity. Catalysts 2018, 8, 141. https://doi.org/10.3390/catal8040141.

    • Crossref
    • Export Citation
  • 19.

    Tskhovrebov, A. G., Luzyanin, K. V., Kuznetsov, M. L., Sorokoumov, V. N., Balova, I. A., Haukka, M., Kukushkin, V. Y. Substituent R-dependent regioselectivity switch in nucleophilic addition of N-phenylbenzamidine to PdII-and PtII-complexed isonitrile RN-C giving aminocarbene-like species. Organometallics 2011, 30, 863–874. https://doi.org/10.1021/om101041g.

    • Crossref
    • Export Citation
  • 20.

    Mikhaylov, V. N., Sorokoumov, V. N., Novikov, A. S., Melnik, M. V., Tskhovrebov, A. G., Balova, I. A. Intramolecular hydrogen bonding stabilizes trans-configuration in a mixed carbene/isocyanide PdII complexes. J. Organomet. Chem. 2020, 912, 121174. https://doi.org/10.1016/j.jorganchem.2020.121174.

    • Crossref
    • Export Citation
  • 21.

    Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M., Kukushkin, V. Y. Synthesis and characterization of Cis-(RNC)2PtII species useful as synthons for generation of various (aminocarbene)Pt II complexes. J. Chem. Crystallogr. 2012, 42, 1170–1175. https://doi.org/10.1007/s10870-012-0371-0.

    • Crossref
    • Export Citation
  • 22.

    Bader, R. F. W. A Quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. https://doi.org/10.1021/cr00005a013.

    • Crossref
    • Export Citation
  • 23.

    Espinosa, E., Molins, E., Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. https://doi.org/10.1016/s0009-2614(98)00036-0.

    • Crossref
    • Export Citation
  • 24.

    Vener, M. V., Egorova, A. N., Churakov, A. V., Tsirelson, V. G. Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J. Comput. Chem. 2012, 33, 2303–2309. https://doi.org/10.1002/jcc.23062.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Bartashevich, E. V, Tsirelson, V. G. Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ. Chem. Rev. 2014, 83, 1181–1203. https://doi.org/10.1070/rcr4440.

    • Crossref
    • Export Citation
  • 26.

    Kuznetsov, M. L. Relationships between interaction energy and electron density properties for homo halogen bonds of the [(A)NY-X···X-Z(B)m] type (X = Cl, Br, I). Molecules 2019, 24, 2733. https://doi.org/10.3390/molecules24152733.

    • Crossref
    • Export Citation
  • 27.

    Espinosa, E., Alkorta, I., Elguero, J., Molins, E. From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems. J. Chem. Phys. 2002, 117, 5529–5542. https://doi.org/10.1063/1.1501133.

    • Crossref
    • Export Citation
  • 28.

    von Ragué Schleyer, P., Budzelaar, P. H. M., Cremer, D., Kraka, E. Puckered Structures of 1,3‐dihydro‐1,3‐diboretes and bicyclobutane‐2,4‐dione: nonplanar Hückel 2π‐electron aromatic molecules. Angew. Chem. Int. Ed. 1984, 23, 374–375. https://doi.org/10.1002/anie.198403741.

    • Crossref
    • Export Citation
  • 29.

    Macchi, P., Sironi, A. Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord. Chem. Rev. 2003, 238–239, 383–412. https://doi.org/10.1016/s0010-8545(02)00252-7.

  • 30.

    Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. https://doi.org/10.1021/ja100936w.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search