Bifurcation Analysis for Small-Amplitude Nonlinear and Supernonlinear Ion-Acoustic Waves in a Superthermal Plasma

Durga Prasad Chapagai
  • Department of Mathematics, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Rangpo, East Sikkim, India
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Jharna TamangORCID iD: https://orcid.org/0000-0002-4447-3024 and Asit SahaORCID iD: https://orcid.org/0000-0001-7542-7699

Abstract

Bifurcation analysis of small-amplitude nonlinear and supernonlinear periodic ion-acoustic waves (SNPIAWs) is reported in a three-constituent superthermal plasma composing of cold fluid ions and kappa-distributed electrons of two temperatures (cold and hot). Using the reductive perturbation technique, the plasma system is studied under the Korteweg-de Vries (KdV) and the modified KdV (mKdV) equations. Furthermore, the KdV and mKdV equations are transformed into planar dynamical systems applying travelling wave transfiguration. Possible qualitative phase profiles for the corresponding dynamical systems controlled by system parameters (κ,αc,αh and f) are shown. Small-amplitude SNPIAW solution for the mKdV equation is presented for the first time. Small-amplitude nonlinear periodic ion-acoustic wave (NPIAW) and ion-acoustic solitary wave solutions (IASWS) for both the KdV and mKdV equations are obtained. Effects of parameters κ and αh on IASW, NPIAW and SNPIAW solutions are investigated.

  • [1]

    A. E. Dubinov, D. Y. Kolotkov, and M. A. Sazonkin, Plasma Phys. Rep. 38, 833 (2012).

  • [2]

    A. E. Dubinov and D. Y. Kolotkov, IEEE Trans. Plasma Sci. 40, 1429 (2012).

  • [3]

    A. E. Dubinov and D. Y. Kolotkov, High Energy Chem. 46, 349 (2012).

  • [4]

    A. E. Dubinov and D. Y. Kolotkov, Plasma Phys. Rep. 38, 909 (2012).

  • [5]

    F. Verheest, Phys. Plasma 16, 013704 (2009).

  • [6]

    T. K. Baluku, M. A. Hellberg, and F. Verheest, EPL 91, 15001 (2010).

  • [7]

    F. Verheest, Phys. Plasma 18, 083701 (2011).

  • [8]

    A. Das, A. Bandyopadhyay, and K. P. Das, J. Plasma Phys. 78, 149 (2012).

  • [9]

    F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 20, 082309 (2013).

  • [10]

    S. K. Maharaja, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 20, 083705 (2013).

  • [11]

    F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Rev. 87, 043107 (2013).

  • [12]

    O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 21, 082304 (2014).

  • [13]

    S. A. El-Wakil, E. M. Abulwafa, and A A. Elhanbaly, Phys. Plasmas 24, 073705 (2017).

  • [14]

    F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 20, 012302 (2013).

  • [15]

    C. P. Olivier, F. Verheest, and W. A. Hereman, Phys. Plasmas 25, 032309 (2018).

  • [16]

    M. N. Ali, S. M. Husnine, A. Saha, S. K. Bhowmik, S. Dhawan, et al., Nonlinear Dyn. 94, 1791 (2018).

  • [17]

    A. E. Dubinov and D. Y. Kolotkov, Rev. Mod. Plasma Phys. 2, 2 (2018).

  • [18]

    T. Kamalam and S. S. Ghosh, Phys. Plasmas 25, 122302 (2018).

  • [19]

    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morries, Solitons Nonlinear Waves Equations, Academic Press Inc, London 1982.

  • [20]

    A. A. Mamun, Astrophys. Space Sci. 268, 443 (1999).

  • [21]

    K. E. Lonngren, Opt. Quant. Electron. 30, 615 (1998).

  • [22]

    A. Saha, P. Chatterjee, and C. S. Wong, Brazilian J. Phys. 45, 656 (2015).

  • [23]

    W. F. El-Taibany and A. A. Mamun, Phys. Rev. E 85, 026406 (2012).

  • [24]

    G. S. Lakhina, S. V. Singh, and A. P. Kakad, Phys. Plasmas 21, 062311 (2014).

  • [25]

    A. Saha and P. Chatterjee, Eur. Phys. J. D 69, 203 (2015).

  • [26]

    T. K. Maji, M. K. Ghorui, A. Saha, and P. Chatterjee, Brazilian J. Phys. 47, 295 (2017).

  • [27]

    A. Renyi, Acta Math. Hung. 6, 285 (1955).

  • [28]

    V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

  • [29]

    P. Chatterjee, U. Ghosh, K. Roy, and S. V. Muniandy, Phys. Plasmas 17, 122314 (2010).

  • [30]

    C. R. Choi, K. W. Min, and T. N. Rhee, Phys. Plasmas 18, 092901 (2011).

  • [31]

    N. S. Saini, I. Kourakis, and M. A. Hellberg, Phys. Plasmas 16, 062903 (2009).

  • [32]

    T. K. Baluku and M. A. Hellberg, Phys. Plasmas 15, 123705 (2008).

  • [33]

    N. Ahmadihojatabad, H. Abbasi, and H. Hakimi Pajouh, Phys. Plasmas 17, 112305 (2010).

  • [34]

    B. Sahu, Phys. Plasmas 17, 122305 (2010).

  • [35]

    E. I. El-Awady, S. A. El-Tantawy, W. M. Moslem, and P. K. Shukla, Phys. Lett. A 374, 3216 (2010).

  • [36]

    T. K. Das, S. Choudhury, A. Saha, and P. Chatterjee, J. Fizik Malayasia 38, 010016 (2017).

  • [37]

    M. N. Kadijani, H. Abbasi, and H. H. Pajouh, Plasma Phys. Control Fusion 53, 025004 (2011).

  • [38]

    I. Kourakis, S. Sultana, and M. A. Hellberg, Plasma Phys. Control Fusion 54, 124001 (2012).

  • [39]

    S. H. Strogatz, Nonlinear Dynamics and Chaos, Westview Press, USA (2007).

  • [40]

    U. K. Samanta, A. Saha, and P. Chatterjee, Phys. Plasma 20, 022111 (2013).

  • [41]

    O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Adv. Spaces Res. 53, 813 (2016).

  • [42]

    S. V. Singh and G. S. Lakhina, Commun. Nonlinear Sci. Numer. Simulat. 23, 274 (2015).

  • [43]

    L. Mandi, A. Saha, and P. Chatterjee, Space Res. 64, 427 (2019).

  • [44]

    A. Saha, N. Pal, and P. Chatterjee, Phys. Plasma 21, 102101 (2014).

  • [45]

    M. M. Selim, A. El-Depsy, and E. F. El-Shamy, Astrophys. Space Sci. 360, 66 (2015).

  • [46]

    A. Saha and J. Tamang, Adv. Space Res. 63, 1596 (2019).

  • [47]

    J. Tamang and A. Saha, Zeitschrift für Naturforschung A 74, 499 (2019).

  • [48]

    P. K. Prasad, S. Sarkar, A. Saha, and K. K. Mondal, Brazilian J. Phys. 49, 698 (2019).

  • [49]

    F. Verheest, C. P. Olivier, and W. A. Hereman, J. Plasma Phys. 18, 905820208 (2018).

  • [50]

    W. D. Jones, A. Lee, S. M. Gleman, and H. J. Doucet, Phys. Rev. Lett. 35, 1349 (1975).

  • [51]

    T. E. Sheridan, M. J. Goeckner, and J. Goree, J. Vacuum Sci. Technol. A 9, 688 (1991).

  • [52]

    S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York 1982.

  • [53]

    A. Saha, Commun. Nonlinear Sci. Numer. Simulat. 17, 3539 (2012).

  • [54]

    J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York 1983.

Purchase article
Get instant unlimited access to the article.
$42.00
Price including VAT
Log in
Already have access? Please log in.


Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search