Propagation of Waves in a Nonideal Magnetogasdynamics with Dust Particles

Kajal Sharma, Rajan Arora, Astha ChauhanORCID iD: https://orcid.org/0000-0002-8995-2336 and Ashish Tiwari

Abstract

In this article, we use the surface theory and compatibility conditions to describe the behaviour of wave propagation and their culmination into a shock wave in nonideal reacting gas with dust particles. The one-dimensional steepening of waves has been considered. A Bernoulli-type transport equation for the velocity gradient has been obtained. A numerical approach is used to explain the effects of van der Waals excluded volume of the medium, the ratio of specific heats, and the mass concentration of the solid particles on the shock wave.

  • [1]

    T. Y. Thomas, Int. J. Eng. Sci. 4, 207 (1966).

  • [2]

    B. D. Coleman and M. E. Gurtin, J. Chem. Phys. 47, 597 (1967).

  • [3]

    R. Shyam, L. P. Singh, and V. D. Sharma, Acta Astronaut. 13, 95 (1986).

  • [4]

    M. Chadha and J. Jena, Comput. Appl. Math. 34, 729 (2015).

  • [5]

    R. Arora, S. Yadav, and M. J. Siddiqui, Bound. Value Probl. 2014, 142 (2014).

  • [6]

    M. Pandey, R. Radha, and V. D. Sharma, Q. J. Mech. Appl. Math. 61, 291 (2008).

  • [7]

    T. Nath, R. K. Gupta, and L. P. Singh, Acta Astronaut. 133, 397 (2017).

  • [8]

    R. K. Chaturvedi, P. Gupta, and L. P. Singh, Acta Astronaut. 160, 552 (2019).

  • [9]

    V. D. Sharma, Q. J. Mech. Appl. Math. 40, 527 (1987).

  • [10]

    L. P. Singh, S. D. Ram, and D. B. Singh, Meccanica 48, 841 (2013).

  • [11]

    L. P. Singh, M. Singh, and A. Husain, Astrophys. Space Sci. 331, 597 (2011).

  • [12]

    L. P. Singh, A. Husain, and M. Singh, Meccanica 46, 437 (2011).

  • [13]

    L. P. Singh, M. Singh, and B. D. Pandey, AIAA J. 48, 2523 (2010).

  • [14]

    L. P. Singh, A. Husain, and M. Singh, Acta Astronaut. 68, 16 (2011).

  • [15]

    M. Chadha and J. Jena, Int. J. Nonlinear Mech. 74, 18 (2015).

  • [16]

    P. K. Sahu, Phys. Fluids 29, 086102 (2017).

  • [17]

    J. Yin, J. Ding, and X. Luo, Phys. Fluids 30, 013304 (2018).

  • [18]

    G. J. Consolmagno, Icarus 43, 203 (1980).

  • [19]

    G. E. Morfill and E. Grün, Planet. Space Sci. 27, 1269 (1979).

  • [20]

    J. P. Vishwakarma, G. Nath, and R. K. Srivastava, Ain Shams Eng. J. 9, 1717 (2018).

  • [21]

    A. Chauhan and R. Arora, Indian J. Phys. 1, 2019. https://doi.org/10.1007/s12648-019-01499-3.

  • [22]

    R. L. Merlino, J. R. Heinrich, S. H. Kim, and J. K. Meyer, Plasma Phys. Control. F. 54, 124014 (2012).

  • [23]

    M. J. Siddiqui, R. Arora, and A. Kumar, Chaos Soliton. Fract. 97, 66 (2017).

  • [24]

    J. P. Vishwakarma and G. Nath, Meccanica 44, 239 (2009).

  • [25]

    W. Bleakney and A. H. Taub, Rev. Mod. Phys. 21, 584 (1949).

  • [26]

    G. Boillatt and T. Ruggeri, P. Roy. Soc. Edinb. A 83, 17 (1979).

  • [27]

    A. Jeffrey, Quasilinear Hyperbolic Systems and Waves, Pitman Publishing, London 1976, p. 230.

  • [28]

    A. Jeffrey, Appl. Anal. 3, 79 (1973).

  • [29]

    A. Mentrelli, T. Ruggeri, M. Sugiyama, and N. Zhao, Wave Motion 45, 498 (2008).

  • [30]

    V. D. Sharma, Int. J. Eng. Sci. 24, 813 (1986).

  • [31]

    V. D. Sharma, R. Ram, and P. L. Sachdev, J. Fluid Mech. 185, 153 (1987).

  • [32]

    S. Mehla and J. Jena, Rocky Mt. J. Math. 49, 235 (2019).

  • [33]

    R. Singh and J. Jena, Int. J. Nonlinear Mech. 77, 158 (2015).

Purchase article
Get instant unlimited access to the article.
$42.00
Price including VAT
Log in
Already have access? Please log in.


Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search