Solitary Wave with Quantisation of Electron’s Orbit in a Magnetised Plasma in the Presence of Heavy Negative Ions

Manoj Kr. Deka and Apul N. Dev
  • Corresponding author
  • Center for Applied Mathematics and Computing, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The propagation characteristics of solitary wave in a degenerate plasma in the presence of Landau-quantised magnetic field and heavy negative ion are studied. The nature of solitary wave in such plasma under the influence of magnetic quantisation and the concentration of both electrons and negative ions, as well as in the presence of degenerate temperature, are studied with the help of a time-independent analytical scheme of the solution of Zakharov–Kuznetsov equation. The electron density, as well as the magnetic quantisation parameter, has an outstanding effect on the features of solitary wave proliferation in such plasma. Interestingly, for any fixed electron density, the magnetic quantisation parameter has an equal control on the maximum height and dispersive properties of the solitary wave. Toward higher temperatures and higher magnetic fields, the width of the solitary wave decreases. For a lower magnetic field, the maximum amplitude of the solitary wave decreases rapidly at higher values of degenerate temperature and negative ion concentration; however, at a lower value of degenerate temperature, the maximum amplitude increases with increasing negative ion concentration.

  • [1]

    H. Amemiya, B. M. Annaratone, and J. E. Allen, Plasma Sources Sci. Technol. 8, 179 (1999).

  • [2]

    P. H. Chaizy, H. Reme, J. A. Sauvaud, C. d’Uston, R. P. Lin, et al., Nature 349, 393 (1991).

  • [3]

    R. A. Gottscho and C. E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986).

  • [4]

    N. C. Adhikary, M. K. Deka and H. Bailung, Phys. Plasmas 16, 063701 (2009).

  • [5]

    M. K. Deka, A. N. Dev, A. P. Misra, and N. C. Adhikary, Phys. Plasmas 25, 012102 (2018).

  • [6]

    E. F. El-Shamy, R. C. Al-Chouikh, A. El-Depsy, and N. S. Al-Wadie, Phys. Plasmas 23, 122122 (2016).

  • [7]

    A. El-Depsy and M. M. Selim, IEEE Trans. Plasma Sci. 44, 2901 (2016).

  • [8]

    A. U. Rahman, S. A. Khan, and A. Qamar, Plasma Sci. Tech. 17, 12 (2015).

  • [9]

    S. K. El-Labany, W. F. El-Taibany, A. E. El-Samahy, A. M. Hafez, and A. Atteya, IEEE Trans. Plasma Sci. 44, 842 (2016).

  • [10]

    K. Aoutou, M. Tribeche, and T. H. Zerguini, Astrophys Space Sci. 340, 355 (2012).

  • [11]

    S. Sadiq, S. Mahmood, Q. Haque, and M. Z. Ali, Astrophy. J. 793, 27 (2014).

  • [12]

    S. G. Tagare, S. V. Singh, R. V. Reddy, and G. S. Lakhina, Nonlinear Proc. Geoph. 11, 215 (2004).

  • [13]

    S. V. Singh, S. Devanandhan, G. S. Lakhina, and R. Bharuthram, Phys. Plasmas 23, 082310 (2016).

  • [14]

    T. Sreeraj, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 25, 052902 (2018).

  • [15]

    R. Rubia, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 25, 032302 (2018).

  • [16]

    R. Rubia, S. V. Singh, and G. S. Lakhina, J. Geophys. Res. Space Phys. 122, 9134 (2017).

  • [17]

    G. S. Lakhina, S. V. Singh, R. Rubia, and T. Sreeraj, Phys. Plasmas 25, 080501 (2018).

  • [18]

    S. Devanandhan, S. V. Singh, G. S. Lakhina, and R. Bharuthram, Commun. Nonlinear Sci. Numer. Simulat. 22, 1322 (2015).

  • [19]

    G. S. Lakhina and S. Singh, in: Kappa Distributions: Theory and Applications in Plasmas (Ed. G. Livadiotis), 1st ed., Elsevier eBook, Oxford OX5 1GB, UK 2017.

  • [20]

    M. K. Deka and A. N. Dev, Ann. Phys. 395, 45 (2018).

  • [21]

    J. Landstreet, Phys. Rev. 153, 1372 (1967).

  • [22]

    S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, John Wiley and Sons, New York, USA 1981.

  • [23]

    V. M. Lipunov, Neutron Star Astrophysics, Nauka, Moscow 1987.

  • [24]

    M. J. Iqbal, H. A. Shah, W. Masood, and N. L. Tsintsadze, Eur. Phys. J. D 72, 192 (2018).

  • [25]

    A. A. Mamun and P. K. Shukla, Phys. Plasmas 17, 104504 (2010).

  • [26]

    S. Chandrasekhar, An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago, IL, USA 1939.

  • [27]

    L. K. Ang, T. J. Kwan, and Y. Y. Lau, Phys. Rev. Lett. 91, 208303 (2003).

  • [28]

    T. C. Killian, Nature 441, 297 (2006).

  • [29]

    Y. D. Jung, Phys. Plasmas 8, 3842 (2001).

  • [30]

    M. Opher, L. O. Silva, D. E. Dauger, V. K. Decyk, and J. M. Dawson, Phys. Plasmas 8, 2454 (2001).

  • [31]

    N. L. Tsintsadze, H. A. Shah, M. N. S. Qureshi, and M. N. Tagviashvili, Phys. Plasmas 22, 022303 (2015).

  • [32]

    P. Sumera, A. Rasheed, M. Jamil, M. Siddique, and F. Areeb, Phys. Plasmas 24, 122107 (2017).

  • [33]

    S. Eliezer, P. Norreys, J. T. Mendonça, and K. Lancaster, Phys. Plasmas 12, 052115 (2005).

  • [34]

    U. Wagner, M. Tatarakis, A. Gopal, F. N. Beg, E. L. Clark, et al., Phys. Rev. E 70, 026401 (2004).

  • [35]

    A. Mondal, S. V. Rahul, R. Gopal, D. Rajak, M. Anand, et al., AIP Adv. 9, 025115 (2019).

  • [36]

    M. Irfan, S. Ali, and A. M. Mirza, Phys. Plasmas 24, 052108 (2017).

  • [37]

    M. J. Iqbal, W. Masood, H. A. Shah, and N. L. Tsintsadze, Phys. Plasmas 24, 014503 (2017).

  • [38]

    H. A. Shah, W. Masood, M. N. S. Qureshi, and N. L. Tsintsadze, Phys. Plasmas 18, 102306 (2011).

  • [39]

    A. N. Dev and M. K. Deka, Phys. Plasmas 25, 072117 (2018).

  • [40]

    M. R. Hossen, L. Nahar, S. Sultana, and A. A. Mamun, High Energ. Dens. Phys. 13, 13 (2014).

  • [41]

    S. Mahmood, S. Sadiq, Q. Haque, and M. Z. Ali, Phys. Plasmas 23, 062308 (2016).

  • [42]

    E. F. El-Shamy, R. C. Al-Chouikh, A. El-Depsy and N. S. Al-Wadie, Phys. Plasmas 23, 122122 (2016).

  • [43]

    M. M. Masud and A. A. Mamun, Pramana J. Phys. 81, 169 (2013).

  • [44]

    S. Ghosh, Euro Phys. Lett. 99, 36002 (2012).

  • [45]

    F. Haas and S. Mahmood, Phys. Rev. E 94, 033212 (2016).

  • [46]

    B. Sahu, Physica A 509, 162 (2018).

  • [47]

    M. R. Hossen and A. A. Mamun, Braz J Phys 44, 673 (2014).

  • [48]

    S. Hussain, N. Akhtar, and Saeed-ur-Rehman, Chin. Phys. Lett. 28, 045202 (2011).

  • [49]

    S. Hussain and N. Akhtar, Phys. Plasmas 25, 062109 (2018).

  • [50]

    L. Tie-Lu, W. Yun-Liang, and L. Yan-Zhen, Chin. Phys. B 24, 025202 (2015).

  • [51]

    B. Sahu, B. Pal, S. Poria, and R. Roychoudhury, J. Plasma Phys. 81, 905810510 (2015).

  • [52]

    W. Masood and B. Eliasson, Phys. Plasmas 18, 034503 (2011).

  • [53]

    M. M. Haider, S. Akter, S. S. Duha, and A. A. Mamun, Cent. Eur. J. Phys. 10, 1168 (2012).

  • [54]

    H. A. Shah, M. J. Iqbal, N. Tsintsadze, W. Masood, and M. N. S. Qureshi, Phys. Plasmas 19, 092304 (2012).

  • [55]

    A. Rahman, S. Ali, A. M. Mirza, and A. Qamar, Phys. Plasmas 20, 042305 (2013).

  • [56]

    A. Rahman, W. Masood, B. Eliasson, and A. Qamar, Phys. Plasmas 20, 092305 (2013).

  • [57]

    M. I. Shaukat, Eur. Phys. J. Plus 132, 210 (2017).

  • [58]

    L. D. Landau and E. M. Lifshitz, Statistical Physics, Butterworth-Heinemann, Oxford 1980.

  • [59]

    L. Tsintsadze, NAIP Conference Proceedings 1306, 89 (2010).

  • [60]

    M. Mehdipoor, Astrophys Space Sci. 338, 73 (2012).

  • [61]

    P. Kaliappan and M. Lakshmanan, J. Math. Phys. 23, 3 (1982).

  • [62]

    M. Mehdipoor and A. Neirameh, Astrophys Space Sci. 337, 269 (2012).

  • [63]

    M. Musette and R. Conte, Phys. A Math. Gen. 27, 3895 (1994).

  • [64]

    S. Kumar and D. Kumar, Comput. Math. Appl. 77, 2096 (2019).

  • [65]

    D. Kumar and S. Kumar, Comput. Math. Appl. 78, 857 (2019).

  • [66]

    S. Kumar, D. Kumar, and A. M. Wazwaz, Phys. Scr. 94, 065204 (2019).

  • [67]

    M. Guo, H. Dong, J. Liub, and H. Yang, Nonlinear Anal. Model. 24, 11 (2019).

  • [68]

    J. Sarma, Chaos Soliton. Fract. 39, 277 (2009).

  • [69]

    J. Sarma, Chaos Soliton. Fract. 42, 1599 (2009).

  • [70]

    K. Abe and O. Inoue, J. Comput. Phys. 34, 202 (1980).

  • [71]

    A. M. Wazwaz, Comput. Math. Appl. 45, 1101 (2005).

  • [72]

    G. C. Das and J. Sarma, Phys. Plasmas 6, 4394 (1999).

  • [73]

    A. M. Wazwaz, Appl. Math Comput. 202, 275 (2008).

  • [74]

    D. Koester and G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990).

  • [75]

    V. M. Lipunov, Astrophysics of Neutron Stars, Springer-Verlag, Berlin, Germany 1992.

  • [76]

    S. S. Ghosh and G. S. Lakhina, Nonlinear Proc. Geoph. 11, 219 (2004).

Purchase article
Get instant unlimited access to the article.
$42.00
Price including VAT
Log in
Already have access? Please log in.


Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search