Insight into the Structural, Electrical, and Magnetic Properties of Al-Substituted BiFeO3 Synthesised by the Sol–Gel Method

Mukhtar Ahmad
  • Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Rizwan Ali
  • Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Atiq ur Rehman
  • Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
  • Department of Natural and Social Sciences, Sharif College of Engineering and Technology, Lahore, Pakistan
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Akbar Ali
  • Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ishrat Sultana
  • Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ihsan Ali and Muhammad Asif
  • Corresponding author
  • Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Multiferroics with chemical formula BiAlxFe1−xO3 (x = 0, 0.1, 0.2, and 0.3) and substituted by Al are synthesised using sol–gel auto-combustion. The materials are sintered at 500 °C for 5 h. In the ongoing study, the crystal structure of BiAlxFe1−xO3 was investigated by X-ray diffraction. After confirming the rhombohedral single-phase crystal structure, various characterisation techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, elemental mapping images, electrical properties, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM), were used to investigate the synthesised samples. The grain size estimated from SEM images decreased as Al contents increased. Elemental composition was confirmed by EDX spectra. Direct current electrical resistivity increased whereas drift mobility decreased with increasing Al contents. The VSM results of Al-doped BiFeO3 (BFO) demonstrate that BFO crystals with size >60 nm show anti-ferromagnetic behaviour, which is evident in the present study. The increase in Al doping results in an increase in coercivity, as grain size and coercivity are inversely related with each other. This is because of the replacement of Fe3+ by Al3+ ions, which weakens the sub-lattice interactions. It has been observed that BFO materials with such parameters are favourable for ferroelectric random access memories where data can be written electrically and read magnetically.

  • [1]

    D. I. Khomskii, J. Magnetism Magnetic Mater. 306, 1 (2006).

  • [2]

    E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T. P. Comyn, et al., Mater. Chem. Phys. 162, 106 (2015).

  • [3]

    C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James, Solid State Commun. 7, 701 (1969).

  • [4]

    V. Isupov and A. Skaya, Sov. Phys. Solid State 2, 2651 (1961).

  • [5]

    G. Smolenskii, V. Yudin, E. Sher, and Y.E. Stolypin, Sov. J. Exp. Theor. Phys. 16, 622 (1963).

  • [6]

    J.-M. Moreau, C. Michel, R. Gerson, and W. J. James, J. Phys. Chem. Solids 32, 1315 (1971).

  • [7]

    D.-C. Jia, J.-H. Xu, H. Ke, W. Wang, and Y. Zhou, J. Eur. Ceram. Soc. 29, 3099 (2009).

  • [8]

    G.-C. Xu, W. Zhang, X.-M. Ma, Y.-H. Chen, L. Zhang, et al., J. Am. Chem. Soc. 133, 14948 (2011).

  • [9]

    S. Wei, Y. Liu, H. Tian, H. Tong, Y. Liu, et al., J. Magnetism Magnetic Mater. 377, 419 (2015).

  • [10]

    M.-G. Ma and J.-F. Zhu, Recent Patents Nanotechnol. 4, 164 (2010).

  • [11]

    B. Baruwati, D. K. Kumar, and S. V. Manorama, Sens. Actuators B Chem. 119, 676 (2006).

  • [12]

    Y. Inaguma, M. Yoshida, and T. Katsumata, J. Am. Chem. Soc. 130, 6704 (2008).

  • [13]

    G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, et al., IBM J. Res. Dev. 52, 449 (2008).

  • [14]

    M. Shisode, P. B. Kharat, D. N. Bhoyar, V. Vinayak, M. K. Babreka, et al., in: AIP Conference Proceedings, AIP Publishing, USA 2018.

  • [15]

    J. Xie, C. Feng, X. Pan, and Y. Liu, Ceram. Int. 40, 703 (2014).

  • [16]

    F. Gheorghiu, L. Curecheriu, A. Ianculescu, M. Calugaru, and L. Mitoseriu, Scr. Mater. 68, 305 (2013).

  • [17]

    J. R. Sahu and C. Rao, Solid State Sci. 9, 950 (2007).

  • [18]

    C. Yang, C. Z. Liu, C. M. Wang, W. G. Zhang, and J. S. Jiang, J. Magnetism Magnetic Mater. 324, 1483 (2012).

  • [19]

    S. Rana and R. P. Singh, J. Mater. Sci. Mater. Electron. 27, 9346 (2016).

  • [20]

    S. B. Rana, R. Singh, and S. Arya, J. Mater. Sci. Mater. Electron. 28, 2660 (2017).

  • [21]

    R. P. P. Singh, I. S. Hudiara, S. Panday, and S. B. Rana, J. Superconduct. Novel Magnetism 29, 819 (2016).

  • [22]

    M. Ahmad, R. Grössinger, I. Ali, I. Ahmad, and M. U. Rana, J. Alloys Comp. 577, 382 (2013).

  • [23]

    A. Bhosale and B. Chougule, Mater. Chem. Phys. 97, 273 (2006).

  • [24]

    M. Mozaffari, Z. Abooalizadeh, and J. Amighian, J. Magnetism Magnetic Mater. 323, 2997 (2011).

  • [25]

    P. Kumar and M. Kar, Phys. B Condensed Matter 448, 90 (2014).

  • [26]

    M. K. Sharif, M. A. Khan, A. Hussain, F. Iqbal, I. Shakir, et al., J. Alloys Comp. 667, 329 (2016).

  • [27]

    C. Ramesh, K. Maniysundar, and S. Selvanandan, Mater. Today Proc. 3, 1363 (2016).

  • [28]

    V. Verma, A. Beniwal, A. Ohlan, and R. Tripathi, J. Magnetism Magnetic Mater. 394, 385 (2015).

  • [29]

    V. Kumar, A. Gaur, N. Sharma, J. Shah, and R. K. Kotnala, Ceram. Int. 39, 8113 (2013).

  • [30]

    A. Paul, M. J. H. van Dal, A. A. Kodentsov, and F. J. J. van Loo, Acta Mater. 52, 623 (2004).

  • [31]

    M. W. Mukhtar, M. Irfan, I. Ahmad, I. Ali, M. N. Akhtar, et al., J. Magnetism Magnetic Mater. 381, 173 (2015).

  • [32]

    K. Shehzad, M. Ahmad, C. Xie, D. Zhan, W. Wang, et al., J. Hazard. Mater. 373, 75 (2019).

  • [33]

    F. Ren, H. Wang, P. A. Menchhofer, and J. O. Kiggans, Appl. Phys. Lett. 103, 221907 (2013).

  • [34]

    G. F. Dionne, Proc. IEEE 63, 777 (1975).

  • [35]

    J. Buban, Science 311, 212 (2006).

  • [36]

    R. Mishra, D. K. Pradhan, R. N. P. Choudhary, and A. Banerjee, J. Phys. Condensed Matter 20, 045218 (2008).

  • [37]

    W. Eerenstein, N. Mathur, and J. F. Scott, Nature 442, 759 (2006).

  • [38]

    R. Mazumder, P. S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, et al., Appl. Phys. Lett. 91, 062510 (2007).

  • [39]

    T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett. 7, 766 (2007).

  • [40]

    P. Kumar and M. Kar, Mater. Chem. Phys. 148, 968 (2014).

  • [41]

    J. Lin, Z. Guo, M. Li, Q. Lin, K. Huang, et al., J. Appl. Biomater. Funct. Mater. 16, 93 (2018).

Purchase article
Get instant unlimited access to the article.
$42.00
Price including VAT
Log in
Already have access? Please log in.


Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search