Theoretical Studies of the Defect Structures for Cu(en)32+ and Ru(en)33+ Clusters in Tris(Ethylenediamine) Complexes

Xu-Sheng Liu
  • Corresponding author
  • Department of Applied Physics, School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Shao-Yi Wu
  • Department of Applied Physics, School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Meng Han
  • Corresponding author
  • School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Qing-Sheng Zhu
  • Department of Applied Physics, School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The local structures and spin Hamiltonian parameters (SHPs, g factors, and hyperfine structure constants) for the Cu(en)32+ and Ru(en)33+ clusters in ethylenediamine complexes are theoretically studied from perturbation formulae for tetragonally and trigonally elongated octahedral 3d9 and 4d5 clusters, respectively. Cu2+ centres I and II may experience the slight relative elongations ΔZ by about 0.005 and 0.007 Å in Zn(en)3(NO3)2 polycrystalline powder at 4.2 K and room temperature, respectively, along the C4 axis arising from the Jahn–Teller effect. For Ru(en)33+ cluster in the uniaxial [Rh(en)3Cl3]2NaCl ⋅ 6H2O single crystal doped with the single-crystal chloride salt [Ru(en)3]Cl3 ⋅ 4H2O, the local impurity–ligand bonding angle related to the C3 axis suffers a negative variation Δβ (≈−1.85°) with respect to the host βH in [Ru(en)3]Cl3 ⋅ 4H2O at 4 K. The features of SHPs and defect structures for the Cu(en)32+ and Ru(en)33+ clusters are also discussed in view of the different experimental temperatures.

  • [1]

    L. Qin, X. Li, J. Q. Zhu, W. C. Li, H. Xu, et al., Ind. Crop. Prod. 102, 51 (2017).

  • [2]

    J. P. Stanford, P. H. Pfromm, and M. E. Rezac, J. Appl. Polym. Sci. 134, 44771 (2017).

  • [3]

    D. K. Das, J. Kumar, A. Bhowmick, P. Kr. Bhattacharyya, and S. Banu, Inorg. Chim. Acta. 462, 167 (2017).

  • [4]

    Z. Li, Y. Zhang, Q. Niu, M. Mou, Y. Wu, et al., J Lumin. 187, 274 (2017).

  • [5]

    L. Bai, H. Liu, F. Qiao, and H. Yan, Food Chem. 230, 154 (2017).

  • [6]

    Y. Li, C. C. Huang, J. B. Zheng, and H. L. Qi, Biosens. Bioelectron. 38, 407 (2012).

  • [7]

    K. Mech, J. Mech, P. Zabinski, R. Kowalik, and M. Wojnicki, J. Elecroanal. Chem. 748, 76 (2015).

  • [8]

    M. Yagi, M. Kasamastu, and M. Kaneko, J. Mol. Catal. A-Chem. 151, 29 (2000).

  • [9]

    A. L. Crumbliss, S. C. Perine, A. Kirk Edwards, and D. P. Rillema, J. Phys. Chem. 96, 1388 (1992).

  • [10]

    V. Moses, Ö. T. Bishop, and K. A. Lobb, Chem. Phys. Lett. 678, 91 (2017).

  • [11]

    S. Pramodini Devi, N. Shantibala Devi, L. Jaideva Singh, R. K. Bindiya Devi, W. Radhapiyari Devi, et al., Inorg. Nano-Met. Chem. 47, 223 (2017).

  • [12]

    S. Dhar, M. Nethaji, and A. R. Chakravaty, Inorg. Chem. Acta. 358, 2437 (2005).

  • [13]

    I. Qasim, M. W. U. Rehman, M. Mumtaz, G. Hussain, K. Nadeem, et al., J. Alloy. Compd. 649, 320 (2015).

  • [14]

    H. M. Zhang, S. Y. Wu, P. Xu, L. L. Li, and S. X. Zhang, Eur. Phys. J. Appl. Phys. 50, 30901 (2010).

  • [15]

    X. S. Liu, S. Y. Wu, S. Y. Zhong, L. J. Zhang, and F. Zhang, Russ. J. Phys. Chem. A+ 92, 2744 (2018).

  • [16]

    H. M. Zhang, S. Y. Wu, and M. Q. Kuang, Comput. Theor. Chem. 984, 137 (2012).

  • [17]

    J. A. Stanko, H. J. Peresie, R. A. Bernheim, R. Wang, and P. S. Wang, Inorg. Chem. 12, 634 (1973).

  • [18]

    I. Bertini, D. Gatteschi, and A. Scozzafava. Inorg. Chem. 16, 1973 (1977).

  • [19]

    P. V. Bernhardt and M. J. Riley, Aust. J. Chem. 56, 287 (2003).

  • [20]

    R. D. Peacock and B. Stewart, Chem. Commun. 5, 295 (1982).

  • [21]

    N. Norani, H. Rahemi, S. F. Tayyari, and M. J. Riley, J. Mol. Model. 15, 25 (2009).

  • [22]

    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London 1970.

  • [23]

    A. S. Chakravarty, Introduction to the Magnetic Properties of solids, Wiley-Interscience Publication, New York 1980.

  • [24]

    Y. V. Yablokov and T. A. Ivanova, Coord. Chem. Rev. 1255, 190 (1999).

  • [25]

    C. Koepke, K. Wisniewski, and M. Grinberg, J. Alloy. Compd. 341, 19 (2002).

  • [26]

    S. Y. Wu, Q. Fu, J. Z. Lin, and H. M. Zhang, Opt. Mater. 29, 1014 (2007).

  • [27]

    Q. Fu, S. Y. Wu, J. Z. Lin, and J. S. Yao, Pramana-J. Phys. 68, 499 (2007).

  • [28]

    S. Y. Wu, Q. Fu, H. M. Zhang, and G. D. Lu, J. Alloy. Compd. 455, 42 (2008).

  • [29]

    S. Y. Wu, Q. Fu, J. S. Yao, and H. M. Zhang, Radiat. Eff. Defect. S. 162, 627 (2007).

  • [30]

    S. Geschwind and J. P. Remeika, J. Appl. Phys. 33, 370 (1962).

  • [31]

    T. J. O’Reilly and E. L. Offenbacher, J. Chem. Phys. 54, 3065 (1971).

  • [32]

    H. J. Peresie and J. A. Stanko, J. Chem. Soc. D 1674 (1970).

  • [33]

    W. H. Wei, S. Y. Wu, and H. N. Dong, Z. Naturforsch. A 60, 541 (2005).

  • [34]

    Y. X. Hu, S. Y. Wu, and X. F. Wang, Philosoph. Mag. 90, 1391 (2010).

  • [35]

    M. Q. Kuang, S. Y. Wu, G. L. Li, and X. F. Hu, Mol. Phys. 113, 698 (2015).

  • [36]

    C. C. Ding, S. Y. Wu, G. L. Li, and Y. Q. Xu, Phys. B 459, 129 (2015).

  • [37]

    M. Q. Kuang, S. Y. Wu, B. T. Song, L. L. Li, and Z. H. Zhang, Optik 124, 892 (2013).

  • [38]

    C. Koepke, K. Wisniewski, and M. Grinberg, J. Alloy. Compd. 341, 19 (2002).

  • [39]

    D. Neill, M. J. Riley, and C. H. L. Kennard, Acta Cryst. C53, 701 (1997).

  • [40]

    R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

  • [41]

    D. J. Newman and B. Ng, Rep. Progr. Phys. 52, 699 (1989).

  • [42]

    H. M. Zhang, S. Y. Wu, Y. X. Hu, and X. F. Wang, J. Supercond. Nov. Magn. 23, 833 (2010).

  • [43]

    X. F. Hu, S. Y. Wu, M. Q. Kuang, and G. L. Li, Z. Naturforsch. A 69, 562 (2014).

  • [44]

    Y. X. Hu, S. Y. Wu, X. F. Wang, and P. Xu, Eur. Phys. J. D 58, 281 (2010).

  • [45]

    H. M. Zhang, S. Y. Wu, P. Xu, and L. L. Li, J. Mol. Struct.-Theochem. 953, 157 (2010).

  • [46]

    E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (2010).

  • [47]

    J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London 1964.

  • [48]

    D. W. Smith, J. Chem. Soc. A 92, 3108 (1970).

  • [49]

    B. R. McGarvey, J. Phys. Chem. 71, 51 (1967).

  • [50]

    H. M. Zhang, S. Y. Wu, M. Q. Kuang, and Z. H. Zhang, J. Phys. Chem. Solids 73, 846 (2012).

  • [51]

    S. Y. Wu, H. M. Zhang, P. Xu, and S. X. Zhang, Spectrochim. Acta A 75, 230 (2010).

  • [52]

    L. L. Li, S. Y. Wu, P. Xu, and S. X. Zhang, Phys. Chem. Miner. 37, 497 (2010).

  • [53]

    H. M. Zhang, S. Y. Wu, P. Xu, and L. L. Li, Mod. Phys. Lett. B 24, 2357 (2010).

  • [54]

    Y. K. Cheng, S. Y. Wu, C. C. Ding, and M. Q. Kuang, J. Appl. Spectr. 81, 1064 (2015).

  • [55]

    C. C. Ding, S. Y. Wu, Y. K. Cheng, and L. J. Zhang, Int. J. Mod. Phys. B 29, 1542015 (2015).

  • [56]

    J. L. Rao, G. Sivaramaiah, and N. O. Gopal, Phys. B 349, 206 (2004).

  • [57]

    D. Li, X. Zu, D. Ao, Q. Tang, Y. Fu, et al., Sensor. Actuat. B-Chem. 294, 55 (2019).

  • [58]

    D. Li, Y. Tang, D. Ao, X. Xiang, S. Wang, et al., Int. J. Hydrogen Energ. 44, 3985 (2019).

  • [59]

    C. Cai, S. Han, W. Liu, K. Sun, L. Qiao, et al., Appl. Catal. B-Environ. 260, 118103 (2020).

Purchase article
Get instant unlimited access to the article.
$42.00
Price including VAT
Log in
Already have access? Please log in.


Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search