Electronic band profiles and magneto-electronic properties of ternary XCu2P2 (X = Ca, Sr) compounds: insight from ab initio calculations

Zeshan Zada 1 , Hayat Ullah 2 , Robeen Bibi 3 , Sabeen Zada 3  and Asif Mahmood 4
  • 1 Materials Modelling Lab, Department of Physics, Islamia College University, Peshawar, Pakistan
  • 2 Material Modeling and Simulation Lab, Department of Physics, Women University of Azad, Jammu & Kashmir Bagh, Bagh, Pakistan
  • 3 Department of Chemistry, Women University Swabi, Swabi, KP, Pakistan
  • 4 College of Engineering, Chemical Engineering Department, King Saud University, Riyadh, Saudi Arabia
Zeshan Zada
  • Materials Modelling Lab, Department of Physics, Islamia College University, Peshawar, Pakistan
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Hayat Ullah
  • Corresponding author
  • Material Modeling and Simulation Lab, Department of Physics, Women University of Azad, Jammu & Kashmir Bagh, Bagh, Pakistan
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Robeen Bibi, Sabeen Zada and Asif Mahmood
  • College of Engineering, Chemical Engineering Department, King Saud University, Riyadh, Saudi Arabia
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Full-potential augmented plane waves (FP-APW) method is applied to determine the electronic band profiles and magneto-electronic properties of XCu2P2 (X = Ca, Sr) compounds. We have adopted Perdew, Burke and Ernzerhof's generalized gradient approximation (PBE-GGA) along with GGA plus Hubbard U parameter method (GGA+U) as exchange correlation potentials. The physical properties of interest for XCu2P2 (X = Ca, Sr) compounds were analyzed for the first time in the Zintl phase of tetragonal structure with space group I4/mmm (No. 139). From the structural parameters we have found that ferromagnetic phase is more stable as compared to paramagnetic and antiferromagnetic phase. Electronic band profiles predict the metallic nature of these compounds in FM phase. The projected densities of states computed in this work recognize that the bonding is accomplished through hybridization of Cu-3d with P-p states. The evaluated magnetic moments support weak ferromagnetism in these compounds. The compounds of interest are thermodynamically stable. In addition, the cohesive energies and Curie temperatures of the studied compounds were also predicted. Metallic and ferromagnetic nature of XCu2P2 (X = Ca, Sr) compounds predict the important of these compounds in spintronic devices.

  • [1]

    N. S. Sangeetha, A. Pandey, Z. A. Benson, and D. C. Johnston, Phys. Rev. B, vol. 94, no. 9, 094417, 2016.

    • Crossref
    • Export Citation
  • [2]

    Y. Singh, A. Ellern, and D. C. Johnston, Phys. Rev. B, vol. 79, 094519, 2009.

    • Crossref
    • Export Citation
  • [3]

    Y. Singh, M. A. Green, Q. Huang, et al., Phys. Rev. B, vol. 80, p. 100403(R), 2009.

    • Crossref
    • Export Citation
  • [4]

    D. C. Johnston, R. J. McQueeney, B. Lake, et al., Phys. Rev., vol. B84, p. 094445, 2011.

  • [5]

    L. Li, D. Parker, M. Chi, G. M. Tsoi, Y. K. Vohra, and A. S. Sefat, “Metallicity of Ca2 Cu6P5 with single and double copper-pnictide layers,” J. Alloys Compd., vol. 671, pp. 334–339, 2016.

    • Crossref
    • Export Citation
  • [6]

    R. E. Baumbach, V. A. Sidorov, X. Lu, et al., Phys. Rev. B, vol. 89, 2014.

  • [7]

    D. J. Singh, A. S. Sefat, M. A. McGuire, et al., Phys. Rev. B, vol. 79, 094429, 2009.

    • Crossref
    • Export Citation
  • [8]

    Y. Singh, A. Ellern, and D. C. Johnston, Phys. Rev. B, vol. 79, 094519, 2009.

    • Crossref
    • Export Citation
  • [9]

    S. Jia, S. Chi, J. W. Lynn, and R. J. Cava, Phys. Rev. B, vol. 81, 2010.

  • [10]

    V. K. Anand, P. K. Perera, A. Pandey, R. J. Goetsch, A. Kreyssig, and D. C. Johnston, Phys. Rev. B, vol. 85, 214523, 2012.

    • Crossref
    • Export Citation
  • [11]

    B. Saparov, and A. S. Sefat, J. Solid State Chem., vol. 191, 213, 2012.

    • Crossref
    • Export Citation
  • [12]

    S. F. Wu, P. Richard, A. van Roekeghem, et al., Phys. Rev. B, vol. 91, 235109, 2015.

    • Crossref
    • Export Citation
  • [13]

    F. Ronning, E. D. Bauer, T. S. Park, H. Baek, H. Sakai, and J. D. Thompson, Phys. Rev. B, vol. 79, 2009.

  • [14]

    T. Mine, H. Yanagi, T. Kamiya, Y. Kamihara, M. Hirano, and H. Hosono, Solid State Commun., vol. 147, 111, 2008.

    • Crossref
    • Export Citation
  • [15]

    J. Zeng, S. Qin, C. Le, and J. Hu, “Magnetism and superconductivity in the layered hexagonal transition metal pnictides,” Phys. Rev. B, vol. 96, no. 17, 174506, 2017, doi: 10.1103/PhysRevB.96.174506.

    • Crossref
    • Export Citation
  • [16]

    A. Mewis, “Der ThCr2Si2-Typ und verwandte Strukturen bei APd2X2-verbindungen (A = Ca, Sr, Ba; X = P, As)/ the ThCr2Si2-type and related structures of APd2X2-compounds (A—Ca, Sr, Ba; X = P, As),” Z. Naturforsch. B, vol. 39, no. 6, pp. 713–720, 1984, doi: 10.1515/znb-1984-0603.

    • Crossref
    • Export Citation
  • [17]

    P. Hohenberg and W. Kohn, Phys. Rev., vol. 136, pp. B864–B871, 1964.

    • Crossref
    • Export Citation
  • [18]

    W. Kohn and L. J. Sham, Phys. Rev., vol. 140, pp. A1133–A1138, 1965.

    • Crossref
    • Export Citation
  • [19]

    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties, Vienna: Vienna University of Technology, 2001.

  • [20]

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., vol. 77, 3865, 1996.

    • Crossref
    • PubMed
    • Export Citation
  • [21]

    A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B, vol. 52, R5467, 1995.

    • Crossref
    • Export Citation
  • [22]

    O. Bengone, M. Alouani, P. Blochl, and J. Hugel, Phys. Rev. B, vol. 62, 16392, 2000.

    • Crossref
    • Export Citation
  • [23]

    H. J. Monkhorst and J. D. Pack, Phys. Rev. B, vol. 13, pp. 5188–5192, 1976.

    • Crossref
    • Export Citation
  • [24]

    J. D. Pack and H. J. Monkhorst, Phys. Rev.B, vol. 16, pp. 1748–1749, 1977.

    • Crossref
    • Export Citation
  • [25]

    K. M. Wong, M. Irfan, A. Mahmood, G. Murtaza, Optik, vol. 130, 517, 2017.

    • Crossref
    • Export Citation
  • [26]

    J. Wang and Y. Zhou, Phys. Rev. B, vol. 69, no. 21, 214111, 2004.

    • Crossref
    • Export Citation
  • [27]

    G. Chen, X. Q. Wang, K. Fu, et al., Appl. Phys. Lett., vol. 104, no. 17, 172108, 2014.

    • Crossref
    • Export Citation
  • [28]

    M. E. Monir, H. Ullah, H. Baltach, M. G. Ashiq, and R. Khenata, J. Magn. Magn Mater., vol. 442, pp. 107–117, 2017.

    • Crossref
    • Export Citation
  • [29]

    X. P. Wei, Y. Zhang, T. Wang, et al., Mater. Res. Bull., vol. 86, 139, 2017.

    • Crossref
    • Export Citation
  • [30]

    H. Ullah, F. S. Kayani, and R. Khenata, Mater. Res. Express, vol. 6, 12, 2019.

  • [31]

    S. Wurmehl, G. H. Fecher, H. C. Kandpal, et al., Phys. Rev. B, vol. 72, 184434, 2005.

    • Crossref
    • Export Citation
  • [32]

    A. Candan, G. Ugur, Z. Chari, H. Baaziz, and M. R. El-lialtioglu, J. Alloys Compd., vol. 560, 215, 2013.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search