Enhancing crystal quality and optical properties of GaN nanocrystals by tuning pH of the synthesis solution

Mohammad Mohammadrezaee 1 , Naser Hatefi-Kargan 1  and Ahmadreza Daraei 1
  • 1 Department of Physics, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
Mohammad Mohammadrezaee
  • Department of Physics, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Naser Hatefi-Kargan
  • Corresponding author
  • Department of Physics, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Ahmadreza Daraei
  • Department of Physics, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Gallium nitride nanocrystals as a wide bandgap semiconductor material for optoelectronic applications can be synthesized using chemical methods. In this research using co-precipitation and nitridation processes gallium nitride nanocrystals have been synthesized, and by tuning pH of the synthesis solution at the co-precipitation step, crystal quality and optical property of the resultant gallium nitride nanocrystals have been enhanced. Gallium nitride nanocrystal samples were synthesized using solutions with pH values of 2.1, 4.8, 7.8, and 9.0, and then nitridation at 950 °C under the flow of ammonia gas. The synthesized nanocrystal samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence techniques. The XRD data show that the nanocrystals have hexagonal wurtzite crystal structure, and using Scherer’s equation the sizes of the synthesized nanocrystals are 23.6, 26.6, 19.7, and 10.4 nm for the samples synthesized using the solutions with pH values of 2.1, 4.8, 7.8, and 9.0 respectively. The sizes of the nanocrystals obtained from SEM images are larger than the values obtained using Scherer’s equation, due to the aggregation of nanocrystals. EDX spectra show that pH of the synthesis solution affects the elemental stoichiometry of the gallium nitride nanocrystals. We obtained better stoichiometry for the nanocrystal sample synthesized using solution with the pH of 4.8. Photoluminescence spectra show that for this sample the emission intensity is higher than the others.

  • [1]

    O. Ambacher, J. Phys. D: Appl. Phys., vol. 31, p. 2653, 1998.

    • Crossref
    • Export Citation
  • [2]

    H. Wu, J. Hunting, K. Uheda, , J. Cryst. Growth, vol. 279, p. 303, 2005.

    • Crossref
    • Export Citation
  • [3]

    J. Y. Duboz, F. Binet, E. Rosencher, F. Scholz, and V. Harle, Mater. Sci. Eng. B, vol. 43, p. 269, 2014.

  • [4]

    R. Gaska, A. Osinsky, J. Yang, and M. S. Shur, IEEE Electr. Device L, vol. 19, p. 89, 1998.

    • Crossref
    • Export Citation
  • [5]

    S. Nakamura, M. Senoh, S. Nagahama, , Appl. Phys. Lett., vol. 72, p. 211, 1998.

    • Crossref
    • Export Citation
  • [6]

    D. Walker, E. Monroy, P. Kung, , Appl. Phys. Lett., vol. 74, p. 762, 1999.

    • Crossref
    • Export Citation
  • [7]

    C. Xu and K. M. Poduska, J. Mater. Sci.: Mater. Electron, vol. 26, p. 4565, 2015.

  • [8]

    D. Kumar, K. Singh, P. Kumar, V. Verma, and H. S. Bhatti, Chem. Phys. Lett., vol. 635, p. 93, 2015.

    • Crossref
    • Export Citation
  • [9]

    H. Qiu, C. Cao, and H. Zhu, Mater. Sci. Eng. B, vol. 136, p. 33, 2007.

    • Crossref
    • Export Citation
  • [10]

    H. Kim, D.S. Kim, Y.S. Park, D.Y. Kim, T.W. Kang, and K.S. Chung, Adv. Mater., vol. 14, p. 991, 2002.

    • Crossref
    • Export Citation
  • [11]

    Y. Azuma, M. Shimada, and K. Okuyama, Chem. Vapor Depos., vol. 10, p. 11, 2004.

    • Crossref
    • Export Citation
  • [12]

    W. Han and A. Zettl, Appl. Phys. Lett., vol. 80, p. 303, 2002.

  • [13]

    T. J. Goodwin, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, Appl. Phys. Lett., vol. 70, p. 3122, 1997.

    • Crossref
    • Export Citation
  • [14]

    C. Chen, C. Yeh, C. Chen, , J. Am. Chem. Soc., vol. 123, p. 2791, 2001.

  • [15]

    R. K. Roy and A. K. Pal, Mater. Lett., vol. 59, p. 2204, 2005.

    • Crossref
    • Export Citation
  • [16]

    R. Kudrawiec, M. Nyk, M. Syperek, A. Podhorodecki, J. Misiewicz, and W. Strek, Appl. Phys. Lett., vol. 88, p. 181916, 2006.

    • Crossref
    • Export Citation
  • [17]

    S. Manna, V. D. Ashok, and S. K. De, ACS Appl. Mater. Inter., vol. 2, p. 3539, 2010.

    • Crossref
    • Export Citation
  • [18]

    M. Gopalakrishnan, V. Purushothaman, P. Sundara Venkatesh, V. Ramakrishnan, and K. Jeganathan, Mater. Res. Bull., vol. 47, p. 3323, 2012.

    • Crossref
    • Export Citation
  • [19]

    E. Huang, J. Li, G. Wu, W. Dai, N. Guan, and L. Li, RSC Adv., vol. 7, p. 47898, 2017.

    • Crossref
    • Export Citation
  • [20]

    D. Kumar, K. Singh, G. Kaur, V. Verma, and H.S. Bhatti, J. Mater. Sci.: Mater. Electron., vol. 26, p. 6068, 2015.

  • [21]

    M. Nyk, W. Stręk, J. Jabłoński, L. Kępiński, R. Kudrawiec, and J. Misiewicz, Mat. Sci. Semicon. Proc., vol. 8, p. 511, 2005.

    • Crossref
    • Export Citation
  • [22]

    K. Singh, A. Chauhan, M. Mathew, , Appl. Phys. A, vol. 125, p. 24, 2019.

  • [23]

    B. D. Cullity, Elements of X-ray Diffraction, 2n ed., Addison-Wesley Publishing Company, Inc, 1978.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search