Experimental and computational studies on optical properties of a promising N-benzylideneaniline derivative for non-linear optical applications

Naseema Kooliyankal 1 , Rakhi Sreedharan 2 , Sarath Ravi 2 , Raghi Kottoly Ravindran 3 , 4  and Manoj Kumar Thanathu Krishnankutty 3 , 4
  • 1 Department of physics, Nehru Arts and Science College, 671314, Kanhangad, India
  • 2 School of Pure and Applied Physics, Payyanur Campus, Kannur University, 670327, Kannur, India
  • 3 School of Chemical Sciences, Payyanur Campus, Kannur University, 670327, Kannur, India
  • 4 Indian Institute of Information Technology and Management, 695581, Trivandrum, India
Naseema Kooliyankal
  • Corresponding author
  • Department of physics, Nehru Arts and Science College, Kanhangad, 671314, Kerala, India
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Rakhi Sreedharan
  • School of Pure and Applied Physics, Payyanur Campus, Kannur University, Kannur, 670327, Kerala, India
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Sarath Ravi
  • School of Pure and Applied Physics, Payyanur Campus, Kannur University, Kannur, 670327, Kerala, India
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Raghi Kottoly Ravindran
  • School of Chemical Sciences, Payyanur Campus, Kannur University, Kannur, 670327, Kerala, India
  • Indian Institute of Information Technology and Management, Trivandrum, 695581, Kerala, India
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Manoj Kumar Thanathu Krishnankutty
  • School of Chemical Sciences, Payyanur Campus, Kannur University, Kannur, 670327, Kerala, India
  • Indian Institute of Information Technology and Management, Trivandrum, 695581, Kerala, India
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

A new organic non-centrosymmetric nonlinear optical (NLO) material, p-nitrobenzylidene-p-phenylamineaniline (PNBPDA) was synthesized and single crystals of PNBPDA were grown from ethanol solution by slow evaporation solution growth technique. Single crystal X-ray diffraction (XRD) and powder XRD data confirm that PNBPDA crystallizes in monoclinic system with non-centrosymmetric space group Cc.Various characterizations like PXRD, fourier transform infrared (FT-IR) spectroscopy, thermal analysis and micro hardness test have been conducted. Optical studies have been done for evaluating the transparency range and the luminescence property of the grown single crystals of PNBPDA. Dielectric studies have carried out to investigate the electronic polarizability within the grown crystal. The frequency conversion efficiency of the grown crystal was determined using Kurtz Perry powder technique and second harmonic generation (SHG) was found to be 6 times that of standard Potassium Dihydrogen Phosphate (KDP). Z-Scan technique was performed to determine the third order non-linear optical properties of the grown crystal of PNBPDA. The optical limiting property and the laser damage threshold value reflect the practical applicability of PNBPDA crystal for photonic applications. Additionally, the theoretical background of PNBPDA was carved out using Density Functional Theory (DFT) by evaluating the geometrical and electronic structural properties from Frontier Molecular Orbital (FMO) analysis, Molecular Electrostatic Potential (MESP) analysis and non-linear features from dipole moment, polarizability and hyperpolarizability properties embedded within the PNBPDA molecule. The calculated first order hyperpolarizability (β) value of the molecule was found to be 14 times that of the standard urea molecule.

  • [1]

    S. Ravi, R. Sreedharan, K. R. Raghi, T. K. Manoj Kumar, and K. Naseema, “Experimental and computational perspectives on linear and non-linear optical parameters of an orthorhombic crystal for optical limiting applications,” Appl. Phys. A, vol. 126, no. 1, p. 56, Jan. 2020, https://doi.org/10.1007/s00339-019-3234-0.

    • Crossref
    • Export Citation
  • [2]

    D. Yuan, D. Xu, N. Zhang, M. Liu, and M. Jiang, “Organic nonlinear optical crystal MHBA for compact blue-violet laser,” Chinese Phys. Lett., vol. 13, no. 11, pp. 841–843, Nov. 1996, https://doi.org/10.1088/0256-307X/13/11/011.

  • [3]

    M. Iwai, T. Kobayashi, H. Furya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa 4O(BO 3) 3 (Re = Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., vol. 36, no. 3A, p. L276, 1997.

    • Crossref
    • Export Citation
  • [4]

    K. Naseema, V. Rao, K. V. Sujith, and B. Kalluraya, “Crystal growth and characterization of an NLO organic crystal: N′-[(Z)-(4-methylphenyl)methylidene]-4-nitrobenzohydrazide,” Curr. Appl. Phys., vol. 10, no. 4, pp. 1236–1241, Jul. 2010, https://doi.org/10.1016/j.cap.2010.02.050.

  • [5]

    M. Magesh, G. Bhagavannarayana, and P. Ramasamy, “Synthesis, crystal growth and characterization of an organic material: 2-Aminopyridinium succinate succinic acid single crystal,” Spectrochim. Acta. Mol. Biomol. Spectrosc., vol. 150, pp. 765–771, Nov. 2015, https://doi.org/10.1016/j.saa.2015.05.077.

  • [6]

    K. Naseema, V. Rao, K. B. Manjunatha, G. Umesh, K. V. Sujith, and B. Kalluraya, “Synthesis, characterization and studies on nonlinear optical parameters of 4-amino-5-(4-nitrophenyl)-1, 2, 4-triazole-3-thione,” J. Opt., vol. 39, no. 3, pp. 143–148, Sep. 2010, https://doi.org/10.1007/s12596-010-0006-9.

  • [7]

    K. Naseema, S. Ravi, and R. Sreedharan, “Studies on a novel organic NLO single crystal: L-asparaginium oxalate,” Chinese Journal of Physics, vol. 60, pp. 612–622, Aug. 2019, https://doi.org/10.1016/j.cjph.2019.05.037.

    • Crossref
    • Export Citation
  • [8]

    T. E. Souza, I. M. Rosa, A. O. Legndre, et al., “Non-centrosymmetric crystals of new N -benzylideneaniline derivatives as potential materials for non-linear optics,” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater, vol. 71, no. 4, pp. 416–426, Aug. 2015, https://doi.org/10.1107/S2052520615008859.

    • Crossref
    • Export Citation
  • [9]

    J. P. Angelena, M. Akilan, K. Raja, J. M. Linet, and S. J. Das, “Growth and characterization of glycinium oxalate crystals in ethanol and methanol,” Optik, vol. 126, no. 23, pp. 3912–3916, Dec. 2015, https://doi.org/10.1016/j.ijleo.2015.07.159.

    • Crossref
    • Export Citation
  • [10]

    E. Ilango, R. Rajasekaran, K. Shankar, S. Krishnan, and V. Chithambaram, “Synthesis, growth and characterization of non linear optical Bisthiourea ammonium chloride single crystals by slow evaporation technique,” Optic. Mater., vol. 37, pp. 666–670, Nov. 2014, https://doi.org/10.1016/j.optmat.2014.08.011.

  • [11]

    K. A. Nandekar, J. R. Dontulwar, and W. B. Gurnule, “Thermoanalytical studies and kinetics of newly synthesized copolymer derived from p-hydroxybenzoic acid, and semicarbazide,” Rasayan J. Chem., vol. 5, p. 8, 2012.

  • [12]

    R. A. Khatri, S. S. C. Chuang, Y. Soong, and M. Gray, “Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for CO2 Capture,” Energy Fuels, vol. 20, no. 4, pp. 1514–1520, Jul. 2006, https://doi.org/10.1021/ef050402y.

  • [13]

    P. R. Deepthi and J. Shanthi, “Optical, dielectric & ferroelectric studies on amino acids doped TGS single crystals,” RSC Adv., vol. 6, no. 40, pp. 33686–33694, 2016, https://doi.org/10.1039/C5RA25700J.

    • Crossref
    • Export Citation
  • [14]

    Ro. Mu. Jauhar, V. Viswanathan, P. Vivek, G. Vinitha, D. Velmurugan, and P. Murugakoothan, “A new organic NLO material isonicotinamidium picrate (ISPA): crystal structure, structural modeling and its physico-chemical properties,” RSC Adv., vol. 6, no. 63, pp. 57977–57985, 2016, https://doi.org/10.1039/C6RA10477K.

    • Crossref
    • Export Citation
  • [15]

    M. Lydia Caroline and S. Vasudevan, “Growth and characterization of l-phenylalanine nitric acid, a new organic nonlinear optical material,” Mater. Lett., vol. 63, no. 1, pp. 41–44, Jan. 2009, https://doi.org/10.1016/j.matlet.2008.08.059.

    • Crossref
    • Export Citation
  • [16]

    M. Prakash, D. Geetha, and M. Lydia Caroline, “Crystal growth, structural, optical, spectral and thermal studies of tris(l-phenylalanine)l-phenylalaninium nitrate: A new organic nonlinear optical material,” Spectrochim. Acta. Mol. Biomol. Spectrosc., vol. 81, no. 1, pp. 48–52, Oct. 2011, https://doi.org/10.1016/j.saa.2011.05.039.

  • [17]

    V. Parol, V. Upadhyaya, G. S. Hegde, N. K. Lokanath, and A. N. Prabhu, “Structural and optical characterization of novel nitro substituted D-π-A-π-A type chalcone single crystal showing second-order and third-order nonlinear optical properties,” Physica B: Condens. Matter, vol. 580, p. 411830, Mar. 2020, https://doi.org/10.1016/j.physb.2019.411830.

    • Crossref
    • Export Citation
  • [18]

    V. Krishnakumar, S. Manohar, R. Nagalakshmi, M. Piasecki, I. V. Kityk, and P. Bragiel, “Zinc potassium phosphate hexahydrate crystals for nonlinear optics,” Eur. Phys. J. Appl. Phys., vol. 47, no. 3, p. 30701, Sep. 2009, https://doi.org/10.1051/epjap/2009094.

    • Crossref
    • Export Citation
  • [19]

    J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi (B), vol. 15, no. 2, pp. 627–637, 1966, https://doi.org/10.1002/pssb.19660150224.

    • Crossref
    • Export Citation
  • [20]

    C. S. Chandra, Growth, Dislocations and Hardness studies of a nonlinear Optical Crystal- Glycinium Oxalate, vol. 1, p. 5, 2013.

  • [21]

    M. Nageshwari, P. Jayaprakash, C. R. T. Kumari, G. Vinitha, and M. L. Caroline, “Growth, spectral, linear and nonlinear optical characteristics of an efficient semiorganic acentric crystal: L-valinium L-valine chloride,” Physica B: Condens. Matter, vol. 511, pp. 1–9, Apr. 2017, https://doi.org/10.1016/j.physb.2017.01.027.

    • Crossref
    • Export Citation
  • [22]

    R. Sreedharan, S. Ravi, K. R. Raghi, T. K. M. Kumar, and K. Naseema, “Growth, linear- nonlinear optical studies and quantum chemistry formalism on an organic NLO crystal for opto-electronic applications: experimental and theoretical approach,” SN Appl. Sci., vol. 2, no. 4, p. 578, Apr. 2020, https://doi.org/10.1007/s42452-020-2360-9.

    • Crossref
    • Export Citation
  • [23]

    P. Thomas, R. Junjuri, N. Joy, et al., “Influence of MnCl2 on the properties of an amino acid complex single crystal-l-arginine perchlorate (LAPCl) for optical limiter applications,” J. Mater. Sci. Mater. Electron., vol. 30, no. 9, pp. 8407–8421, May 2019, https://doi.org/10.1007/s10854-019-01158-7.

    • Crossref
    • Export Citation
  • [24]

    N. Durairaj, S. Kalainathan, and M. V. Krishnaiah, “Investigation on unidirectional growth of 1,3,5-Triphenylbenzene by Sankaranarayanan-Ramasamy method and its characterization of lifetime, thermal analysis, hardness and etching studies,” Mater. Chem. Phys., vol. 181, pp. 529–537, Sep. 2016, https://doi.org/10.1016/j.matchemphys.2016.06.090.

    • Crossref
    • Export Citation
  • [25]

    M. S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, and P. Ramasamy, “Crystal growth, physical properties and computational insights of semi-organic non-linear optical crystal diphenylguanidinium perchlorate grown by conventional solvent evaporation method,” J. Cryst. Growth, vol. 483, pp. 16–25, Feb. 2018, https://doi.org/10.1016/j.jcrysgro.2017.11.007.

    • Crossref
    • Export Citation
  • [26]

    B. W. Mott, Micro-Indentation Hardness Testing, London, Butterworths, 1956.

  • [27]

    S. Panchapakesan, K. Subramani, and B. Srinivasan, “Growth, spectral, thermal, electrical, mechanical and nonlinear optical properties of organic single crystal 4–Amino–(1–methylphenyl) pyridinium bromide,” Optik, vol. 157, pp. 774–786, Mar. 2018, https://doi.org/10.1016/j.ijleo.2017.11.141.

    • Crossref
    • Export Citation
  • [28]

    E. M. Onitsch, “The present status of testing the hardness of materials,” Mikroskopie, vol. 95, no. 15, pp. 12–14, 1956.

  • [29]

    Hanneman M, “Indentation size effect and microhardness study,” Metall Manchu, vol. 23, no. 135–139, 1941.

  • [30]

    P. P. Vinaya, A. N. Prabhu, K. Subrahmanya Bhat, and V. Upadhyaya, “Design, growth and characterization of D-π-A-π-D based efficient nonlinear optical single crystal for optical device applications,” J. Phys. Chem. Solid., vol. 123, pp. 300–310, Dec. 2018, https://doi.org/10.1016/j.jpcs.2018.08.014.

    • Crossref
    • Export Citation
  • [31]

    M. S. Kajamuhideen, K. Sethuraman, P. Sasikumar, and H. Shakila, “Investigation on growth, physico-chemical properties, density functional theory and anti-microbial studies of a new organic acentric NLO crystal: Bis (2-aminobenzimidazolium) phthalate,” Mat. Sci. Eng. B, vol. 240, pp. 106–115, Jan. 2019, https://doi.org/10.1016/j.mseb.2019.01.012.

    • Crossref
    • Export Citation
  • [32]

    P. P. Vinaya, A. N. Prabhu, K. S. Bhat, and V. Upadhyaya, “Synthesis, growth and characterization of a long-chain π-conjugation based methoxy chalcone derivative single crystal; a third order nonlinear optical material for optical limiting applications,” Optic. Mater., vol. 89, pp. 419–429, Mar. 2019, https://doi.org/10.1016/j.optmat.2019.01.061.

    • Crossref
    • Export Citation
  • [33]

    P. Karuppasamy, T. Kamalesh, V. Mohankumar, et al., “Synthesis, growth, structural, optical, thermal, laser damage threshold and computational perspectives of 4-nitrophenol 4-aminobenzoic acid monohydrate (4NPABA) single crystal,” J. Mol. Struct., vol. 1176, pp. 254–265, Jan. 2019, https://doi.org/10.1016/j.molstruc.2018.08.074.

    • Crossref
    • Export Citation
  • [34]

    S. K. Kurtz and T. T. Perry, “A Powder Technique for the Evaluation of Nonlinear Optical Materials,” J. Appl. Phys., vol. 39, no. 8, pp. 3798–3813, Jul. 1968, https://doi.org/10.1063/1.1656857.

  • [35]

    P. Prabukanthan, R. Lakshmi, G. Harichandran, and C. S. Kumar, “Synthesis, structural, optical and thermal properties of N-methyl–N-aryl benzamide organic single crystals grown by a slow evaporation technique,” J. Mol. Struct., vol. 1156, pp. 62–73, Mar. 2018, https://doi.org/10.1016/j.molstruc.2017.11.075.

    • Crossref
    • Export Citation
  • [36]

    T. D. Rani, M. Rajkumar, and A. Chandramohan, “Synthesis, crystal structure, thermal, mechanical and laser damage threshold studies of an NLO active organic molecular adduct: 4-Acetylpyridine:4-aminobenzoicacid,” Mater. Lett., vol. 222, pp. 118–121, Jul. 2018, https://doi.org/10.1016/j.matlet.2018.03.195.

  • [37]

    A. Jagadesan, N. Sivakumar, R. M Kumar, G. Chakkaravarthi, and S. Arjunan, “Synthesis, crystal structure, growth and characterization of an optical organic material: 4-Aminopyridinium Trichloro acetate single crystal,” Opt. Mater., vol. 84, pp. 864–869, Oct. 2018, https://doi.org/10.1016/j.optmat.2018.08.025.

  • [38]

    B. K. Revathi, D. R. Jonathan, S. Sathya, and G. Usha, “Crystal growth and characterization of new nonlinear optical piperidine derivative: (4-hydroxypiperidin-1-yl)(4-methylphenyl) methanone,” J. Mol. Struct., vol. 1154, pp. 496–503, Feb. 2018, https://doi.org/10.1016/j.molstruc.2017.10.043.

    • Crossref
    • Export Citation
  • [39]

    C. S. Suchand Sandeep, A. K. Samal, T. Pradeep, and R. Philip, “Optical limiting properties of Te and Ag2Te nanowires,” Chem. Phys. Lett., vol. 485, no. 4–6, pp. 326–330, Jan. 2010, https://doi.org/10.1016/j.cplett.2009.12.065.

    • Crossref
    • Export Citation
  • [40]

    E. Mathew, V. V. Salian, I. H. Joe, and B. Narayana, “Third-order nonlinear optical studies of two novel chalcone derivatives using Z-scan technique and DFT method,” Optics Laser Technol., vol. 120, p. 105697, Dec. 2019, https://doi.org/10.1016/j.optlastec.2019.105697.

    • Crossref
    • Export Citation
  • [41]

    M. C. Sreenath, I. H. Joe, and V. K. Rastogi, “Third-order optical nonlinearities of 1,5-Diaminoanthraquinone for optical limiting application,” Optics Laser Technol., vol. 108, pp. 218–234, Dec. 2018, https://doi.org/10.1016/j.optlastec.2018.06.056.

    • Crossref
    • Export Citation
  • [42]

    B. Chandrakantha, A. M. Isloor, R. Philip, M. Mohesh, P. Shetty, and A. M. Vijesh, “Synthesis and nonlinear optical characterization of new 1,3,4-oxadiazoles,” Bull. Mater. Sci., vol. 34, no. 4, pp. 887–891, Jul. 2011, https://doi.org/10.1007/s12034-011-0210-5.

  • [43]

    A. Jayashree, B. Narayana, S. M. Kumar, K. R. Raghi, B. K. Sarojini, and T. K. M. Kumar, “Synthesis, X-ray crystal structure, Hirshfeld surface analysis, DFT, MESP and molecular docking studies of 2-(4-bromophenyl)-1-(3-fluoro-4-methylphenyl)-4,5-diphenyl-1H-imidazole,” Chem. Data Collections, vol. 21, p. 100237, Jun. 2019, https://doi.org/10.1016/j.cdc.2019.100237.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search