Studies of the Electronic, Optical, and Thermodynamic Properties for Metal-Doped LiH Crystals by First Principle Calculations

  • 1 School of Science, Xi’an Technological University, Xi’an 710021, China
  • 2 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 3 School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710021, China
Li-Na Wu, Shao-Yi Wu, Fei-Hu Liu and Qing Zhang

Abstract

Hydrogen as a clean and abundant energy source with high energy density is considered as a promising solution to future energy crisis, although storage of hydrogen is still challenging. Lithium hydride can be an alternative for hydrogen storage because of its small volume and high storage capacities, although this material is unsuitable as hydrogen reservoir because of its high dehydriding temperature. The density functional theory calculations based on the first principle are applied to study the physical properties of LiH without and with different metal M (M=Al, Fe, and Ru). The M-substituted systems exhibit lower dehydriding temperatures than the pure LiH, and Li1−xAlxH may be the most suitable candidate for hydrogen reservoir owing to the high hydrogen content and low dehydriding temperature. The stability and thermodynamic properties for hydrogen storage are discussed for these systems. The kinetics and the optical activity in the visible and infrared regions are enhanced by the metal dopants, characterized by the M impurity bands in the band gaps of the doped systems.

  • [1]

    B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Int. J. Hydrogen Energy 32, 1121 (2007).

    • Crossref
    • Export Citation
  • [2]

    M. Bououdina, D. Grant, and G. Walker, Int. J. Hydrogen Energy 31, 177 (2006).

    • Crossref
    • Export Citation
  • [3]

    W. Mueller, J. Blackledge, and G. Libowitz, Metal Hydrides, Academic Press, New York 1968.

  • [4]

    Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties, Springer Science & Business Media 2006.

  • [5]

    T. Kelkar, S. Pal, and D. G. Kanhere, ChemPhysChem 9, 928 (2008).

  • [6]

    R. Napán and E. L. Peltzer y Blancá, Int. J. Hydrogen Energ. 37, 5784 (2012).

    • Crossref
    • Export Citation
  • [7]

    Y. Bouhadda, A. Rabehi, and S. Bezzari-Tahar-Chaouche, Revue des Energies Renouvelables 10, 545 (2007).

  • [8]

    M. Lakhal, M. Bhihi, A. Benyoussef, A. El Kenz, M. Loulidi, et al., Int. J. Hydrogen Energy 40, 6137 (2015).

    • Crossref
    • Export Citation
  • [9]

    Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, et al., Nat. Mater. 7, 138 (2007).

    • PubMed
    • Export Citation
  • [10]

    P. Gislon and P. P. Prosini, Int. J. Hydrogen Energy 36, 240 (2011).

    • Crossref
    • Export Citation
  • [11]

    E. Dologlou, J. Appl. Phys. 107, 083507 (2010).

  • [12]

    M. M. Sigalas, J. Nanosci. Adv. Tech. 1, 12 (2015).

  • [13]

    S. Banger, V. Nayak, and U. P. Verma, J. Phys. Chem. Solids 115, 6 (2018).

    • Crossref
    • Export Citation
  • [14]

    D. Mukherjee, B. D. Sahoo, K. D. Joshi, S. C. Gupta, and S. K. Sikka, J. Appl. Phys. 109, 103515 (2011).

    • Crossref
    • Export Citation
  • [15]

    G. Barkhordarian, T. Klassen, and R. Bormann, J. Phys. Chem. B 110, 11020 (2006).

  • [16]

    M. Y. Song, S. N. Kwon, H. R. Park, and S.-H. Hong, Int. J. Hydrogen Energy 36, 13587 (2011).

    • Crossref
    • Export Citation
  • [17]

    M. Cabo, S. Garroni, E. Pellicer, C. Milanese, A. Girella, et al., Int. J. Hydrogen Energy 36, 5400 (2011).

    • Crossref
    • Export Citation
  • [18]

    M. Bhihi, M. Lakhal, H. Labrim, A. Benyoussef, A. E. Kenz, et al., Chin. Phys. B 21, 097501 (2012).

    • Crossref
    • Export Citation
  • [19]

    J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).

  • [20]

    J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968).

  • [21]

    S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. B 110, 8769 (2006).

  • [22]

    I. P. Jain, P. Jain, and A. Jain, J. Alloys Compd. 503, 303 (2010).

    • Crossref
    • Export Citation
  • [23]

    S. N. Nyamsi, V. Yartys, and M. Lototskyy, 1st Africa Energy Materials Conference, 28–31 March 2017 5 (4, Part 2), 10533 (2017).

  • [24]

    X. Chen, J. Zou, X. Zeng, and W. Ding, J. Alloys Compd 701, 208 (2017).

    • Crossref
    • Export Citation
  • [25]

    Z. Xin, J. Zhang, K. Sordakis, M. Beller, C.-X. Du, et al., ChemSusChem 11, 2077 (2018).

    • Crossref
    • PubMed
    • Export Citation
  • [26]

    F. Moser and F. Urbach, Phys. Rev. 102, 1519 (1956).

  • [27]

    G. I. Pilipenko, Phys. Solid State 47, 1573 (2005).

  • [28]

    J. Bruns, D. van Gerven, T. Klüner, and M. S. Wickleder, Angew. Chem. Int. Ed. 55, 8121 (2016).

    • Crossref
    • Export Citation
  • [29]

    CP2K devolop group, CP2K package (http://www.cp2k.org, 2018).

  • [30]

    S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, et al., Z. Kristallogr. 220, 567 (2005).

  • [31]

    R. Jaradat, M. Abu-Jafar, I. Abdelraziq, R. Khenata, D. Varshney, et al., Phase Transit. 90, 914 (2017).

    • Crossref
    • Export Citation
  • [32]

    A. B. Kunz and D. J. Mickish, J. Phys. C: Solid State Phys. 6, L83 (1973).

    • Crossref
    • Export Citation
  • [33]

    A. B. Kunz and D. J. Mickish, Phys. Rev. B 11, 1700 (1975).

  • [34]

    M. J. van Setten, V. A. Popa, G. A. de Wijs, and G. Brocks, Phys. Rev. B 75, 035204 (2007).

  • [35]

    J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, et al., Comput. Phys. Commun. 167, 103 (2005).

    • Crossref
    • Export Citation
  • [36]

    M. Iannuzzi, T. Chassaing, T. Wallman, and J. Hutter, CHIMIA Int. J.Chem. 59, 499 (2005).

    • Crossref
    • Export Citation
  • [37]

    G. Lippert, J. Hutter, and M. Parrinello, Theor. Chem. Acc. 103, 124 (1999).

    • Crossref
    • Export Citation
  • [38]

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    • Crossref
    • PubMed
    • Export Citation
  • [39]

    J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).

  • [40]

    S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).

    • Crossref
    • Export Citation
  • [41]

    C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

  • [42]

    A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B 41, 1227 (1990).

    • Crossref
    • Export Citation
  • [43]

    L. N. Wu, S. Y. Wu, L. J. Zhang, X. S. Liu, and G. J. Zhang, Z. Naturforsch. A 74, 59 (2019).

    • Crossref
    • Export Citation
  • [44]

    A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, and Hayatullah, Chin. Phys. Lett. 30, 047401 (2013).

    • Crossref
    • Export Citation
  • [45]

    C. Kittel, Introduction to Solid State Physics. John Wiley & Sons Inc, New York 1986.

  • [46]

    F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).

  • [47]

    R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press Inc., Boca Raton, Florida 1982.

  • [48]

    D. R. Stephens and E. M. Lilley, J. Appl. Phys. 39, 177 (1968).

  • [49]

    A. G. Ryabukhin, V. E. Roshin, A. V. Roshin, Russ. Metall. (Metally) 2007, 98 (2007).

    • Crossref
    • Export Citation
  • [50]

    S.-Y. Wu, X.-Y. Gao, J.-Z. Lin, and Q. Fu, J. Alloy. Compd. 424, 55 (2006).

    • Crossref
    • Export Citation
  • [51]

    L. N. Wu, S. Y. Wu, X. S. Liu, S. Y. Zhong, and F. Zhang, Phys. Status Solidi B 255, 1800026 (2018).

    • Crossref
    • Export Citation
  • [52]

    L. N. Wu, S. Y. Wu, S. Y. Zhong, L. J. Zhang, and Q. Q. Tan, Magn. Res. Chem. 56, 196 (2018).

    • Crossref
    • Export Citation
  • [53]

    T. Seddik, R. Khenata, O. Merabiha, A. Bouhemadou, S. Bin-Omran, et al., Appl. Phys. A 106, 645 (2012).

  • [54]

    J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross, et al., Proc. Natl. Acad. Sci. 114, 2801 (2017).

    • Crossref
    • Export Citation
  • [55]

    G. I. Pilipenko, A. A. Sabirzyanov, D. V. Oparin, V. G. Stepanov, and F. F. Gavrilov, J. Phys. Condens. Matter 4, 4055 (1992).

    • Crossref
    • Export Citation
  • [56]

    J.-L. Bredas, Mater. Horiz. 1, 17 (2014).

  • [57]

    F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003.

  • [58]

    A. S. Chakravarty, Introduction to the Magnetic Properties of Solids, Wiley, New York, 1980.

  • [59]

    A. Peles, J. A. Alford, Z. Ma, L. Yang, and M. Y. Chou, Phys. Rev. B 70, 165105 (2004).

    • Crossref
    • Export Citation
  • [60]

    P. Vajeeston, P. Ravindran, A. Kjekshus, and H. Fjellvag, Phys. Rev. B 69, 020104 (2004).

    • Crossref
    • Export Citation
  • [61]

    M. Gajdoıfmmodeš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).

    • Crossref
    • Export Citation
  • [62]

    J. Sun, H. T. Wang, J. L. He, and Y. J. Tian, Phys. Rev. B 71, 125132 (2005).

    • Crossref
    • Export Citation
  • [63]

    W. B. Zimmerman and D. J. Montgomery, Phys. Rev. 120, 405 (1960).

    • Crossref
    • Export Citation
  • [64]

    B. L. Dvinyaninov, F. F. Gavrilov, and G. I. Smetanin, J. Appl. Spectros. 6, 38 (1967).

    • Crossref
    • Export Citation
  • [65]

    F. E. Pretzel and C. C. Rushing, J. Phys. Chem. Solids 17, 232 (1961).

    • Crossref
    • Export Citation
  • [66]

    A. J. L. Adam, J. Infrared Millim. Te. 32, 976 (2011).

  • [67]

    S. Tangwancharoen, P. Thongbai, T. Yamwong, and S. Maensiri, Mater. Chem. Phys. 115, 585 (2009).

    • Crossref
    • Export Citation
  • [68]

    I. R. Hooper and J. R. Sambles, Phys. Rev. B 65, 165432 (2002).

    • Crossref
    • Export Citation
  • [69]

    A. A. Lavrentyev, B. V. Gabrelian, V. T. Vu, L. N. Ananchenko, L. I. Isaenko, et al., Opt. Mater. 66, 149 (2017).

    • Crossref
    • Export Citation
  • [70]

    M. Lakhal, M. Bhihi, H. Labrim, A. Benyoussef, S. Naji, et al., Int. J. Hydrogen Energy 38, 8350 (2013).

    • Crossref
    • Export Citation
  • [71]

    W. Grochala and P. P. Edwards, Chem. Rev, 104, 1283 (2004).

  • [72]

    C. Wolverton, V. Ozolins, and M. Asta, Phys. Rev. B 69, 144109 (2004).

    • Crossref
    • Export Citation
  • [73]

    K. Miwa, N. Ohba, S. Towata, Y. Nakamori, and S. Orimo, Phys. Rev. B 69, 245120 (2004).

    • Crossref
    • Export Citation
  • [74]

    H. H. Van Mal, K. H. J. Buschow, and A. R. Miedema, J. Less Common Met. 35, 65 (1974).

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search