Chemistry and spectroscopy of cross-conjugated and pseudo-cross-conjugated quinolinium-ethynyl-benzoate mesomeric betaines

Sviatoslav Batsyts 1 , Francisco J. Ramírez 2 , Juan Casado 2 , Jan C. Namyslo 1  and Andreas Schmidt 1
  • 1 Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
  • 2 Department of Physical Chemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain
Sviatoslav Batsyts
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Francisco J. Ramírez
  • Department of Physical Chemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Juan Casado
  • Department of Physical Chemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Jan C. Namyslo
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Andreas Schmidt
  • Corresponding author
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The three isomers 1-methylquinolinium-2-, 3-, and 4-ethynyl(phenyl-4-carboxylates) belong to two distinct types of heterocyclic mesomeric betaines. The quinolinium substituted in position 3 is a cross-conjugated mesomeric betaine (CCMB), whereas the quinolinium derivatives substituted in positions 2 and 4 are members of the class of pseudo-cross-conjugated mesomeric betaines (PCCMBs). While the charges are strictly separated within the common π-electron system of the CCMB according to the canonical formulae, the charges are effectively but not exclusively delocalized in the PCCMBs because cumulenoid resonance forms including electron sextet structures without external octet stabilization can be formed in accordance with the definition of PCCMBs. As a consequence, despite being closely related structures, the three isomers differ in their chemical and spectroscopic behaviors. Thus, on trying to hydrolyze the ester group of the methyl quinolinium-2-ethynyl-benzoate into the corresponding acid by subsequent treatment with sodium hydroxide in methanol and aqueous hydrochloric acid at pH 3, the acetal methyl 1,1-dimethoxy-2-(quinolinium-ylidene)ethyl]benzoate and the corresponding β-enamino carbonyl compound were formed, respectively. The corresponding acids of the 2- and 4-substituted quinolinium-ethynyl-benzoates were obtained by a modified procedure. On deprotonation, the resulting cross-conjugated quinolinium-3-ethynyl-benzoate betaine proved to be stable, whereas the corresponding pseudo-cross-conjugated quinolinium-2- and -4-ethynyl-benzoate betaines decomposed. Frontier orbital profiles were calculated, and IR and Raman spectra of the starting materials were measured and calculated to analyze the differences of CCMBs and PCCMBs of mesomeric betaines possessing triple bonds. A higher contribution of the cumulenoid resonance forms to the overall structure of the PCCMBs was determined.

  • [1]

    W. D. Ollis, S. P. Stanforth, C. A. Ramsden, Tetrahedron 1985, 41, 2239–2329.

    • Crossref
    • Export Citation
  • [2]

    A. Schmidt, S. Wiechmann, C. F. Otto, Adv. Heterocycl. Chem. 2016, 119, 143–172.

    • Crossref
    • Export Citation
  • [3]

    A. Schmidt, S. Wiechmann, T. Freese, ARKIVOC 2013, i, 424–469.

  • [4]

    C. A. Ramsden, W. P. Oziminski, J. Org. Chem. 2017, 82, 12485–12491.

  • [5]

    C. A. Ramsden, Tetrahedron 2013, 69, 4146–4159.

  • [6]

    C. A. Ramsden, W. P. Oziminski, Tetrahedron 2014, 70, 7158–7165.

    • Crossref
    • Export Citation
  • [7]

    C. A. Ramsden, Progr. Heterocycl. Chem. 2016, 28, 1–25.

    • Crossref
    • Export Citation
  • [8]

    H. Quast, E. Schmitt, Justus Liebigs Ann. Chem. 1970, 732, 64–69.

    • Crossref
    • Export Citation
  • [9]

    A. Gonzalez, F. Schroeder, J. Meinwald, T. Eisner, J. Nat. Prod. 1999, 62, 378–380.

    • Crossref
    • PubMed
    • Export Citation
  • [10]

    A. Gonzalez, J. F. Hare, T. Eisner, Chemoecology 1999, 9, 177–185.

    • Crossref
    • Export Citation
  • [11]

    A. Schmidt, Adv. Heterocycl. Chem. 2003, 85, 67–171.

  • [12]

    P. Barczynski, M. Szafran, Pol. J. Chem. 2009, 83, 1061–1074.

  • [13]

    P. Barczynski, A. Katrusiak, J. Koput, M. Szafran, J. Mol. Struct. 2008, 889, 394–407.

    • Crossref
    • Export Citation
  • [14]

    D. G. Lynn, D. H. Lewis, W. A. Tramontano, L. S. Evans, Phytochemistry 1984, 23, 1225–1228.

    • Crossref
    • Export Citation
  • [15]

    F. Gourand, G. Mercey, M. Ibazizène, O. Tirel, J. Henry, V. Levacher, C. L. Perrio Barré, J. Med. Chem. 2010, 53, 1281–1287.

    • Crossref
    • PubMed
    • Export Citation
  • [16]

    K. T. Potts, P. M. Murphy, W. R. Kuehnling, J. Org. Chem. 1988, 53, 2889–2898.

    • Crossref
    • Export Citation
  • [17]

    K. T. Potts, P. M. Murphy, M. R. DeLuca, W. R. Kuehnling, J. Org. Chem. 1988, 53, 2898–2910.

    • Crossref
    • Export Citation
  • [18]

    A. R. Katritzky, R. Awartani, R. C. Patel, J. Org. Chem. 1982, 47, 498–502.

    • Crossref
    • Export Citation
  • [19]

    K. W. Ratts, R. K. Howe, W. G. Phillips, J. Am. Chem. Soc. 1969, 91, 6115–6121.

    • Crossref
    • Export Citation
  • [20]

    H. Quast, E. Schmitt, Liebigs Ann. Chem. 1970, 732, 43–63.

    • Crossref
    • Export Citation
  • [21]

    A. R. Katritzky, H. M. Faid-Allah, Synthesis 1983, 2, 149–151.

  • [22]

    P. Dyson, D. L. Hammick, J. Chem. Soc. 1937, 1724–1725.

  • [23]

    H. Quast, A. Gelleri, Justus Liebigs Ann. Chem. 1975, 929–938.

  • [24]

    A. Schmidt, A. Beutler, M. Albrecht, F. J. Ramírez, Org. Biomol. Chem. 2008, 6, 287–295.

    • Crossref
    • PubMed
    • Export Citation
  • [25]

    M. Fèvre, J. Pinaud, A. Leteneur, Y. Gnanou, J. Vignolle, D. Taton, K. Miqueu, J.-M. Sotiropoulos, J. Am. Chem. Soc. 2012, 134, 6776–6784.

    • Crossref
    • PubMed
    • Export Citation
  • [26]

    X. Sauvage, A. Demonceau, L. Delaude, Adv. Synth. Catal. 2009, 351, 2031–2038.

    • Crossref
    • Export Citation
  • [27]

    A. Schmidt, N. Münster, A. Dreger, Angew. Chem. Int. Ed. 2010, 49, 2790–2793.

    • Crossref
    • Export Citation
  • [28]

    Z. Guan, M. Gjikaj, A. Schmidt, Heterocycles 2014, 10, 2356–2367.

  • [29]

    Z. Guan, S. Wiechmann, M. Drafz, E. Hübner, A. Schmidt, Org. Biomol. Chem. 2013, 11, 3558–3567.

    • Crossref
    • PubMed
    • Export Citation
  • [30]

    A. Schmidt, L. Merkel, W. Eisfeld, Eur. J. Org. Chem. 2005, 2124–2130.

  • [31]

    C. Böttinger, Liebigs Ann. Chem. 1881, 208, 122–141.

  • [32]

    L. Bouveault, Compt. Rend. 1896, 122, 1543–1545.

  • [33]

    R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719–3726.

  • [34]

    A. Schmidt, S. Batsyts, A. Smeyanov, T. Freese, E. G. Hübner, M. Nieger, J. Org. Chem. 2016, 81, 4202–4209.

    • Crossref
    • PubMed
    • Export Citation
  • [35]

    B. Tuesuwan, S. M. Kerwin, Biochemistry 2006, 45, 7265–7276.

  • [36]

    A. Smeyanov, J. Adams, E. G. Hübner, A. Schmidt, Tetrahedron 2017, 73, 3106–3111.

    • Crossref
    • Export Citation
  • [37]

    S. Haindl, J. Xu, T. Freese, E. G. Hübner, A. Schmidt, Tetrahedron 2016, 72, 7906–7911.

    • Crossref
    • Export Citation
  • [38]

    M. Ferreira, M. F. Rubner, Macromolecules 1995, 28, 7107–7114.

  • [39]

    B.-C. Ku, D. K. Kim, J. S. Lee, A. Blumstein, J. Kumar, L. A. Samuelson, Polym. Compos. 2009, 30, 1817–1824.

    • Crossref
    • Export Citation
  • [40]

    L. Balogh, A. De Leuze-Jallouli, P. Dvornic, Y. Kunugi, A. Blumstein, D. A. Tomalia, Macromolecules 1999, 32, 1036–1042.

    • Crossref
    • Export Citation
  • [41]

    A. Schmidt, M. Nieger, Heterocycles 1999, 51, 2119–2126.

  • [42]

    M. Liu, M. Nieger, E. Hübner, A. Schmidt, Chem. Eur. J. 2016, 5416–5424.

  • [43]

    A. Rahimi, J. C. Namyslo, M. Drafz, J. Halm, E. Hübner, M. Nieger, N. Rautzenberg, A. Schmidt, J. Org. Chem. 2011, 76, 7316–7325.

    • Crossref
    • PubMed
    • Export Citation
  • [44]

    A. Smeyanov, A. Schmidt, Synth. Commun. 2013, 20, 2809–2816.

  • [45]

    A. Rosowsky, R. A. Forsch, C. H. Sibley, C. B. Inderlied, S. F. Queener, J. Med. Chem. 2004, 47, 1475–1486.

    • Crossref
    • PubMed
    • Export Citation
  • [46]

    Y. Zhang, T. Han, S. Gu, T. Zhou, C. Zhao, Y. Guo, X. Feng, B. J. Tong, J. Shi, J. Zhi, Y. Dong, Chem. Eur. J. 2014, 20, 8856–8861.

  • [47]

    X. Li, S. Sun, F. Yang, J. Kang, Y. Wu, Y. Wu, Org. Biomol. Chem. 2015, 13, 2432–2436.

    • Crossref
    • PubMed
    • Export Citation
  • [48]

    E. Paegle, S. Belyakov, M. Petrova, E. Liepinsh, P. Arsenyan, Eur. J. Org. Chem. 2015, 4389–4399.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Zeitschrift für Naturforschung B is an international scientific journal which publishes original papers, microreviews, and letters from all areas of inorganic chemistry, solid state chemistry, coordination chemistry, molecular chemistry, and organic chemistry.

Search