SEARCH CONTENT

You are looking at 1 - 10 of 22,801 items :

  • Mathematics x
  • BY LANGUAGE: German x
Clear All
FREE ACCESS

Abstract

We study the covariant model structure on dendroidal spaces, and establish direct relations to the homotopy theory of algebras over a simplicial operad as well as to the homotopy theory of special Γ-spaces. As an important tool in the latter comparison, we present a sharpening of the classical Barratt–Priddy–Quillen theorem.

FREE ACCESS

Abstract

We study the intersection of two copies of Gr(2,5) embedded in 9, and the intersection of the two projectively dual Grassmannians in the dual projective space. These intersections are deformation equivalent, derived equivalent Calabi–Yau threefolds. We prove that generically they are not birational. As a consequence, we obtain a counterexample to the birational Torelli problem for Calabi–Yau threefolds. We also show that these threefolds give a new pair of varieties whose classes in the Grothendieck ring of varieties are not equal, but whose difference is annihilated by a power of the class of the affine line. Our proof of non-birationality involves a detailed study of the moduli stack of Calabi–Yau threefolds of the above type, which may be of independent interest.

Abstract

We generalize the maximal time existence of Kähler–Ricci flow in [G. Tian and Z. Zhang, On the Kähler–Ricci flow on projective manifolds of general type, Chin. Ann. Math. Ser. B 27 (2006), no. 2, 179–192] and [J. Song and G. Tian, The Kähler–Ricci flow through singularities, Invent. Math. 207 (2017), no. 2, 519–595] to the conical case. Furthermore, if the log canonical bundle KM+(1-β)[D] is big or big and nef, we can examine the limit behaviors of such conical Kähler–Ricci flow. Moreover, these results still hold when D is a simple normal crossing divisor.

Abstract

We study the cohomological Hall algebra Y of a Lagrangian substack Λ of the moduli stack of representations of the preprojective algebra of an arbitrary quiver Q, and their actions on the cohomology of Nakajima quiver varieties. We prove that Y is pure and we compute its Poincaré polynomials in terms of (nilpotent) Kac polynomials. We also provide a family of algebra generators. We conjecture that Y is equal, after a suitable extension of scalars, to the Yangian 𝕐 introduced by Maulik and Okounkov. As a corollary, we prove a variant of Okounkov’s conjecture, which is a generalization of the Kac conjecture relating the constant term of Kac polynomials to root multiplicities of Kac–Moody algebras.

Abstract

We give a direct, explicit and self-contained construction of a local Lie groupoid integrating a given Lie algebroid which only depends on the choice of a spray vector field lifting the underlying anchor map. This construction leads to a complete account of local Lie theory and, in particular, to a finite-dimensional proof of the fact that the category of germs of local Lie groupoids is equivalent to that of Lie algebroids.