SEARCH CONTENT

You are looking at 1 - 10 of 1,915 items :

Clear All

Abstract

In this paper, research on the possibilities of sodium sulphate (Na2SO4) separation from other substances in the filter ash sample is presented. The research material contains six components that differ in chemical composition and density. The possibilities of Na2SO4 separation using dry and wet methods were studied. The dry method was based on separation with a centrifugal air classifier at four cut size limits. The wet method was based on the dissolution of water-soluble components, filtration of insoluble components, and drying the products. The sulphur content of the individual products was determined using both methods. The aim of the research was to determine which method is more suitable for separation of the material in a way that most of the material would contain as little sulphur as possible and the rest of the material would contain concentrated sulphur. The wet method proved to be more successful. The product with mass fraction 33.1% of the total mass, obtained from the aqueous solution, contained 8.39% sulphur after filtration and drying. The water-insoluble component, with mass fraction 66.9% of the total mass, contained 0.56% sulphur. The dry method with the centrifugal air classifier proved to be less successful in comparison with the wet method. The particles containing Na2SO4 are very similar in size and density to the other components of the material, so the separation to the desired extent was not achieved.

Abstract

In this study, we estimate vertical land motion for 35 stations primarily located along the coastline of Portugal and Spain, using GPS time series with at least eight years of observations. Based on this set of GPS stations, our results show that vertical land motion along the Iberian coastline is characterized, in general, by a low to moderate subsidence, ranging from −2.2 mm yr−1 to 0.4 mm yr−1, partially explained by the glacial isostatic adjustment geophysical signal. The estimates of vertical land motion are subsequently applied in the analysis of tide gauge records and compared with geocentric estimates of sea level change. Geocentric sea level for the Iberian Atlantic coast determined from satellite altimetry for the last three decades has a mean of 2.5 ± 0.6 mm yr−1, with a significant range, as seen for a subset of grid points located in the vicinity of tide gauge stations, which present trends varying from 1.5 mm yr−1 to 3.2 mm yr−1. Relative sea level determined from tide gauges for this region shows a high degree of spatial variability, that can be partially explained not only by the difference in length and quality of the time series, but also for possible undocumented datum shifts, turning some trends unreliable. In general, tide gauges corrected for vertical land motion produce smaller trends than satellite altimetry. Tide gauge trends for the last three decades not corrected for vertical land motion range from 0.3 mm yr−1 to 5.0 mm yr−1 with a mean of 2.6 ± 1.4 mm yr−1, similar to that obtained from satellite altimetry. When corrected for vertical land motion, we observe a reduction of the mean to ∼1.9 ± 1.4 mm yr−1. Actions to improve our knowledge of vertical land motion using space geodesy, such as establishing stations in co-location with tide gauges, will contribute to better evaluate sea level change and its impacts on coastal regions.

Abstract

In surveying problems we almost always use unbiased estimators; however, even unbiased estimator might yield biased assessments, which is due to data. In statistics one distinguishes several types of such biases, for example, sampling, systemic or response biases. Considering surveying observation sets, bias from data might result from systematic or gross errors of measurements. If nonrandom errors in an observation set are known, then bias can easily be determined for linear estimates (e.g., least squares estimates). In the case of non-linear estimators, it is not so simple. In this paper we are focused on a vertical displacement analysis and we consider traditional least squares estimate, two Msplitestimates and two basic robust estimates, namely M-estimate, R-estimate. The main aim of the paper is to assess estimate biases empirically by applying Monte Carlo method. The smallest biases are obtained for M- and R-estimates, especially for a high magnitude of a gross error. On the other hand, there are several cases when Msplitestimates are the best. Such results are acquired when the magnitude of a gross error is moderate or small. The outcomes confirm that bias of Msplitestimates might vary for different point displacements.

Abstract

Recent studies reported a uniform global sea level acceleration during the satellite altimetry era (1993–2017) by analyzing globally averaged satellite altimetry measurements. Here, we discuss potential omission errors that were not thoroughly addressed in detecting and estimating the reported global sea level acceleration in these studies. Our analyses results demonstrate that the declared acceleration in recent studies can also be explained equally well by alternative kinematic models based on previously well-established multi-decadal global mean sea level variations of various origins, which suggests prudence before declaring the presence of an accelerating global mean sea level with confidence during the satellite altimetry era.

Abstract

Exchange of and access to spatial data is the principal goal of any Spatial Data Infrastructure, therefore, one of the key concepts of SDI is interoperability, especially semantic and syntactic. Whereas application schemas and quality issues are one of the aspects that have to be considered to ensure a successful data interchange in SDI.

Two types of application schema are widely used in the European SDI as well as in the Polish SDI. They cover both semantic and syntactic interoperability and are an integral parts of spatial data specifications and relevant regulations in the form of data models. However, working out accurate and correct application schemas may be a challenge.

Additionally, faulty or too complex application schemas can influence the ability for valid data interchange, and consequently, prevent achieving interoperability within SDI. Therefore, the capability to examine and estimate the UML and GML application schemas quality seems to be a worthwhile and important issue in the context of semantic and syntactic interoperability in SDI.

The main subject of this article it to set out the context of performed studies, among others, the role of application schema in the interoperable data exchange, issues related to the concept of quality and its measures.

Abstract

A geoid or quasigeoid model allows the integration of satellite measurements with ground levelling measurements in valid height systems. A precise quasigeoid model has been developed for the city of Krakow. One of the goals of the model construction was to provide a more detailed quasigeoid course than the one offered by the national model PL-geoid2011. Only four measurement points in the area of Kraków were used to build a national quasigeoid model. It can be assumed that due to the small number of points and their uneven distribution over the city area, the quasigeoid can be determined less accurately. It became the reason for developing a local quasigeoid model based on a larger number of evenly distributed points. The quasigeoid model was based on 66 evenly distributed points (from 2.5 km to 5.0 km apart) in the study area. The process of modelling the quasigeoid used height anomalies determined at these points on the basis of normal heights derived through levelling and ellipsoidal heights derived through GNSS surveys. Height anomalies coming from the global geopotential model EGM2008 served as a long-wavelength trend in those derived from surveys. Analyses showed that the developed height anomaly model fits the empirical data at the level of single millimetres – mean absolute difference 0.005 m. The developed local model QuasigeoidKR2019, similar to the national model PL-geoid2011, are models closely related to the reference and height systems in Poland. Such models are used to integrate GNSS and levelling observations. A comparison of the local QuasigeoidKR2019 and national PL-geoid2011 model was made for the reference frame PL-ETRF2000 and height datum PL-KRON86-NH. The comparison of the two models with respect to GNSS/levelling height anomalies shows a triple reduction in the values of individual quartiles and a mean absolute difference for the developed local model. These summary statistics clearly indicate that the accuracy of the local model for the city of Krakow is significantly higher than that of the national one.

Abstract

During carbon steel manufacturing, large amounts of electric arc furnace (EAF) slag are generated. EAF slag, if properly treated and processed into aggregate, is an alternative source of high-quality material, which can substitute the use of natural aggregates in most demanding applications in the construction sector, mostly for wearing asphalt courses. In this screening process of high-quality aggregates, a side material with grain size 0/32 mm is also produced, which can be used as an aggregate for unbound layers in road construction. In this study, the environmental impacts of slag aggregate (fraction 0/32 mm) were evaluated in mixed natural/slag aggregates. Different mixtures of natural/slag aggregates were prepared from aged (28 days) and fresh slag, and their environmental impacts were evaluated using leaching tests. It was shown that among the elements, chromium (Cr) was leached from some mixed aggregates in quantities that exceeded the criterion for inert waste. The data from the present investigation revealed that mixed aggregates, prepared from aged slag (fraction 0/32 mm) and natural stone in the ratio 10/90, are environmentally acceptable and can be safely used in unbound materials for road construction.

Abstract

The poplar species in the forest ecosystems are one of the most valuable and beneficial species for the society and environment. Conventional methods require high cost, time and labor need, and the results obtained vary and are insu˚cient in terms of achieved accuracy level. Determination of poplar cultivated fields and mapping of their spatial sites play a vital role for decision-makers and planners to enhance the economic and ecological value of poplar trees. The study aims to map Poplar (P. deltoides) cultivated areas in Akyazi district of Sakarya, Turkey province using various combinations of the Sentinel-2A image bands. For this purpose, object-based classification based on multi-resolution segmentation algorithm was utilized to produce image objects and ensemble learning algorithms, namely, Adaboost (AdaB), Random Forest (RF), Rotation Forest (RotFor) and Canonical correlation forest (CCF) were applied to produce thematic maps. In order to analyze the effects of the spectral bands of the Sentinel-2A image on the object-based classification performance, three datasets consisting of different spectral band combinations (i.e. four 10 m bands, six 20 m bands and ten 10m pan-sharpened bands) were used. The results showed that the RotFor and CCF classifiers produced superior classification performances compared to the AdaB and RF classifiers for the band combinations regarded in this study. Moreover, it was found that determination of poplar tree class level accuracy reached to ~94% in terms of F-score. It was also observed that the inclusion of the six spectral bands at 20 m resolution resulted in a noteworthy increase in classification accuracy (up to 6%) compared to single 10m band combination.

Abstract

As the development of modern science and technology, LBS and location-aware computing are increasingly important in the practical applications. Currently, GPS positioning system is a mature positioning technology used widely, but signals are easily absorbed, reflected by buildings, and attenuate seriously. In such situation, GPS positioning is not suitable for using in the indoor environment.

Wireless sensor networks, such as ZigBee technology, can provide RSSI (received signal strength indicator) which can be used for positioning, especially indoor positioning, and therefore for location based services (LBS).The authors are focused on the fingerprint database method which is suitable for calculating the coordinates of a pedestrian location. This positioning method can use the signal strength indication between the reference nodes and positioning nodes, and design algorithms for positioning. In the wireless sensor networks, according to whether measuring the distance between the nodes in the positioning process, the positioning modes are divided into two categories which are range-based and range-free positioning modes. This paper describes newly improved indoor positioning method based on RSSI fingerprint database, which is range-free.

Presented fingerprint database positioning can provide more accurate positioning results, and the accuracy of establishing fingerprint database will affect the accuracy of indoor positioning. In this paper, we propose a new method about the average threshold and the effective data domain filtering method to optimize the fingerprint database of ZigBee technology. Indoor experiment, which was conducted at the University of Warmia and Mazury, proved that the distance achieved by this system has been extended over 30 meters without decreasing the positioning accuracy. The weighted nearest algorithm was chosen and used to calculate user’s location, and then the results were compared and analyzed. As a result, the positioning accuracy was improved and error did not exceed 0.69 m. Therefore, such system can be easily applied in a bigger space inside the buildings, underground mines or in the other location based services.