You are looking at 1 - 10 of 1,094 items :

  • Bioengineering and Biomedical Engineering x
Clear All
Applications in Biotechnology
Series: De Gruyter STEM
Volume 1: Physics and Simulations to Positron Emission Tomography
Theoretical Essentials, Instrumentation and Methods for Applications in MEMS and Nanotechnology
Series: De Gruyter STEM
From Mountain Bikes to Degradable Bone Grafts
Series: De Gruyter STEM
Recent Advances in Natural Computing and Biomedical Applications



Colposcopy can be used with Electrical Impedance Spectroscopy (EIS) as an adjunct, to assess the presence of High Grade Cervical Intra-epithelial Neoplasia (CIN2+). This analysis of longitudinal data has used the results from women with a negative colposcopy, in order to see if the initial (index) EIS results were able to predict the women who subsequently developed CIN2+. A further objective was to investigate what tissue structural changes might be reflected in the electrical impedance spectra.


847 patients were referred with low grade cytologly. EIS measurements were made around the transformation zone of the cervix during colposcopy. Every EIS spectrum was matched to a template representing CIN2+ and the result was positive if the match exceeded a probability index threshold. The colposcopic impression was also recorded. All the women who developed biopsy proven CIN2+ within three years of the index colposcopy were identified.


The median follow-up was 30.5 months. Where both CI and EIS were initially positive, there was an increased prevalence (8.13%) of CIN2+ developing as opposed to 3.45% in the remaining patients (p=0.0159). In addition, if three or more EIS spectra were positive there was a higher prevalence (9.62% as opposed to 3.56% p=0.0132) of CIN2+ at three years. The index spectra recorded from the women who developed CIN2+ showed EIS changes consistent with increases in the extracellular volume and in cell size inhomogeneity.


EIS does offer prognostic information on the risk of CIN2+ developing over the three-year period following the EIS measurements. The changes in EIS spectra are consistent with an increase in cell size diversity as pre-malignancy develops. These changes may be a consequence of increased genetic diversity as neoplasia develops.


The electrosurgical unit (ESU) is the most common device in modern surgery for cutting and coagulation of tissues. It produces high-frequency alternating current to prevent the stimulation of muscles and nerves. The commercial ESUs are generally expensive and their output power is uncontrolled. The main objective of the proposed study is to propose an economic ESU with an additional feature of output power regulation using a fuzzy logic controller (FLC) based proportional integral derivative (PID) tuned controller. Unlike the previous studies, the proposed controller is designed in a fully closed-loop control fashion to regulate the output power of the ESU to a fixed value under the consideration of highly dynamic tissue impedance. The performance of the proposed method is tested in the MATLAB/SIMULINK environment. In order to validate the superiority of the proposed method, a comparative analysis with a simple (PID) controller based ESU is presented.


Ventricular Assist Devices (VADs) are used to treat patients with cardiogenic shock. As the heart is unable to supply the organs with sufficient oxygenated blood and nutrients, a VAD maintains the circulation to keep the patient alive. The observation of the patient's hemodynamics is crucial for an individual treatment; therefore, sensors to measure quantifiable hemodynmaic parameters are desirable.

In addition to pressure measurement, the volume of the left ventricle and the progress of muscle recovery seem to be promising parameters. Ongoing research aims to estimate ventricular volume and changes in electrical properties of cardiac muscle tissue by applying bioimpedance measurement. In the case where ventricular insufficiency is treated by a catheter-based VAD, this very catheter could be used to conduct bioimpedance measurement inside the assisted heart. However, the simultaneous measurement of bioimpedance and VAD support has not yet been realized, although this would allow the determination of various loading conditions of the ventricle. For this purpose, it is necessary to develop models to validate and quantify bioimpedance measurement during VAD support.

In this study, we present an in silico and an in vitro conductivity model of a left ventricle to study the application of bioimpedance measurement in the context of VAD therapy. The in vitro model is developed from casting two anatomical silicone phantoms: One phantom of pure silicone, and one phantom enriched with carbon, to obtain a conductive behavior close to the properties of heart muscle tissue. Additionally, a measurement device to record the impedance inside the ventricle is presented. Equivalent to the in vitro model, the in silico model was designed. This finite element model offers changes in material properties for myocardium and the blood cavity.

The measurements in the in vitro models show a strong correlation with the results of the simulation of the in silico model. The measurements and the simulation demonstrate a decrease in impedance, when conductive muscle properties are applied and higher impedances correspond to smaller ventricle cross sections.

The in silico and in vitro models are used to further investigate the application of bioimpedance measurement inside the left heart ventricle during VAD support. We are confident that the models presented will allow for future evaluation of hemodynamic monitoring during VAD therapy at an early stage of research and development.