SEARCH CONTENT

You are looking at 1 - 10 of 47,420 items :

  • Organic Chemistry x
Clear All
Fundamentals
Tuning Properties and Applications
Stereoselective Reactions and Applications in Organic Synthesis

Abstract

Co-crystallization of C-propyl-pyrogallol[4]arene (PgC3) with 4,4′-bipyridine (bpy) in ethanol afforded a multi-component complex (PgC3) · 3(bpy) ·(EtOH) (1) that consists of a one-dimensional brick-wall framework, which was formed by four pyrogallol[4]arene molecules and two juxtaposed bpy molecules, entrapping two other bpy molecules as guests within each cavity. Heating a mixture of PgC3 and trans-1,2-bis-(4-pyridyl)ethylene (bpe) in an ethanol-water mixed solvent allowed the isolation of a multi-component complex (PgC3) ·(bpe) · 2(EtOH) ·(H2O) (2), which has a two-dimensional wave-like polymer structure with the bpe molecules embedded in the wave trough between two PgC3 molecules. Single-crystal X-ray crystallography was utilized to investigate the hydrogen bonding networks of the multi-component complexes 1 and 2.

Abstract

Ag2CdSnS4 was synthesized by a two step mechanochemical synthesis route. From a detailed analysis of the observed reflections in the X-ray powder diffraction pattern, the crystal structure proposed in the literature (space group Cmc21 [E. Parthé, K. Yvon, R. H. Deitch, Acta Crystallogr. 1969, B25, 1164–1174; O. V. Parasyuk, I. D. Olekseyuk, L. V. Piskach, S. V. Volkov, V. I. Pekhnyo, J. Alloys Compd. 2005, 399, 173–177]) is questionable. Our structural investigations presented in this contribution point to the fact that Ag2CdSnS4 crystallizes in the monoclinic wurtzkesterite-type structure (space group Pn). At around T = 200°C, a phase transition to the orthorhombic wurtzstannite-type structure (space group Pmn21) is observed.

Abstract

A new polymerizable naphthalene derivative has been designed, prepared, and characterized by 1H, 13C NMR, and MS. The new monomer synthesis has successfully been accomplished from a cheap commercially available raw material, in only four steps with good yields. The four steps can be easily scaled up for manufacturing purposes. It is anticipated that the new precursor can be very useful in the preparation of valuable materials with high refractive index for numerous opto-electronic applications.

FREE ACCESS

Abstract

Condensation of 3,6-dichloropyridazine or 3,6-dichloro-4,5-dimethyl- pyridazine with 3-methyl-1H-pyrazole or 4-methyl-1H-pyrazole with the assistance of sodium metal in tetrahydrofuran at reflux afforded three 3,6-bis(pyrazolyl)- pyridazine-type ligands: 3,6-bis(3-methylpyrazolyl)pyridazine (L1), 3,6-bis(4-methyl- pyrazolyl)pyridazine (L2) and 4,5-dimethyl-3,6-bis(4-methylpyrazolyl)pyridazine (L3). Reactions of cis-[RuCl2(bpy)2] · 2H2O (bpy = 2,2′-bipyridine) and L1, L2 or L3 in the presence of NH4PF6 produced the heteroleptic cationic ruthenium(II) complexes [Ru(L1)(bpy)2](PF6)2 (1), [Ru(L2)(bpy)2](PF6)2 (2) and [Ru(L3)(bpy)2](PF6)2 (3), respectively. The three complexes have been characterized by UV/Vis and luminescence spectroscopy. The crystal structures of 1 · EtOH, 2 · EtOH and 3 have been determined by single-crystal X-ray diffraction.