SEARCH CONTENT

You are looking at 1 - 10 of 28,591 items :

  • Physical Chemistry x
Clear All
Methods for Prediction of their Performance
Series: De Gruyter STEM
A Conceptual Introduction

Abstract

The activated carbon was made of carbonized chest nut shell (CCS) and used as low cost adsorbent for 2,4-D (2,4-dichlorophenoxyacetic acid) removal. The experiments were conducted at different temperatures such as 35, 45 and 55 °C and this system represents as L type adsorption behavior. The experimental data were modelled using several isotherm models such as Langmuir, Freundlich, Temkin and Dubinin Radushkevich. The adsorption dynamics were searched by applying pseudo first, pseudo second and intra particle diffusion models. The thermodynamic approach was conducted for determining the thermodynamic values of ΔH°, ΔS° and ΔG°.

Abstract

In this paper, the effect of the crystalline microstructures of polyvinylidene fluoride (PVDF), as cathode binder, on mechanical and electrochemical properties of the cathode, and on the cell performance is investigated. The crystalline phases of the PVDF films prepared at different temperatures are determined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) and also mechanical strength of PVDF films evaluated by a tensile test. The cathodes were prepared at altered temperatures to achieve different PVDF phases. The effect of various crystalline phases on the cathode performance was studied. The obtained cathodes were analyzed by scanning electron microscope (SEM), contact angle measurement, and adhesion test. The electrochemical performance of the cathodes was evaluated by charge-discharge cycling test and AC impedance spectroscopy. Mechanical tests results showed that the cathode which is prepared at 60 °C has the best adhesion and mechanical stability. In addition, the charge-discharge cycling studies showed that this cathode has the highest capacity efficiency. AC impedance spectroscopy illustrated that this electrode has the lowest charge transfer resistance and SEI resistance.

Abstract

The solvent finding step has always been a time-consuming job in chemical-involved processes. The source of difficulty mainly comes from the trial-and-errors, as a repetitive process of chosing solvents and mixing them in different proportions. Computers are good at doing repetitive processes; however, they can only deal with numerical values, rather than qulitative scales. Numerification of qualitative parameters (like solubility) has already been introduced. The most recent one is the Hansen solubility parameters (HSPs). Using the HSPs could provide a solvent or solvent-mixture. In our previous study, we introduced a computer-aided model and a software to find a solvent mixture. In this study, we have used the computer-aided solvent selection model to find some solvent mixtures for polyamide 11, a biobased polymer which has attracted enormous attention recently. Using this numerical model significantly diminished the time of solvent development experimentation by decreasing the possible/necessary trials.

Abstract

The 50 nm thickness Zn-doped polyvinyl alcohol (PVA) was deposited on n-4H-SiC semiconductor as interlayer by electro-spinning method and so Au/Zn-doped PVA/n-4H-SiC metal-polymer-semiconductor (MPS) structure were fabricated. The real and imaginary parts of the complex dielectric constant (ε′, ε′′), loss-tangent (tan δ), the real and imaginary parts of the complex electric modulus (M′, M′′) and ac electrical conductivity (σ ac) behavior of this structure were examined using impedance spectroscopy method in a wide range of frequency (1 kHz–400 kHz) and voltage (−1 V)–(+6 V) at room temperature. The values of ε′, ε′′, tan δ, M′, M′′ and σ ac are determined sensitive to the frequency and voltage in depletion and accumulation regions. The values of ε′ and ε′′ decrease with increasing frequency while the values of M′ and σ ac increase. The peak behavior in the tan δ and M′′ vs. frequency curves was attributed to the dielectric relaxation processes and surface states (Nss). The plots of ln (σ ac) vs. ln (f) at enough high forward bias voltage (+6 V) have three linear regions with different slopes which correspond to low, intermediate and high frequencies, respectively. The dc conductivity is effective at low frequencies whereas the ac conductivity effective at high frequencies. According to experimental results, the surface/dipole polarizations can occur more easily occur at low frequencies and the majority of Nss between Zn-doped PVA and n-4H-SiC contributes to the deviation of dielectric behavior of this structure.

Abstract

The use of indigenous natural materials and their modification toward fruitful application is one of the important subjects. Thermal modification of Rice Husk at 400 oC resulted into Rice Husk Char (RHC) which was chemically modified with KOH and was labeled as KOH Modified Rice Husk Char (KMRHC). Both RHC and KMRHC were characterized by using, Fourier transformed infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-rays (EDX) and X-ray diffraction (XRD) before and after their use as adsorbents. The prepared material was applied for the removal of toxic dyes, Direct Blue (DB) and Titan Yellow (TY) from aqueous media. The maximum adsorption capacity of DB and TY dyes on KMRHC were inspected as 30.9 mg/g and 28.6 mg/g, respectively at pH 4 using initial dye concentrations of 80 mg/L containing 2500 mg/L of the adsorbent dose with agitation speed of 240 rpm at 303 K. At the same experimental conditions the highest percentage removal of DB and TY on the adsorbent were observed as 96.6% and 89.3%, respectively. Thermodynamics studies of the adsorption of DB and TY dyes on KMRHC inferred for exothermic and spontaneous process. The value of ΔS is negative which suggested that randomness decreases at the interface of adsorbent-adsorbate during the adsorption. The kinetics study indicated that the experimental data of the adsorption process for both dyes, best fits to pseudo-second order kinetic model. The equilibrium data was tested on Langmuir, Freundlich and Temkin adsorption isotherm models. It was observed that the data are best fit to the Langmuir isotherm model (R2 > 0.99), which suggested that the adsorption process is dominated by chemisorption approach. The overall results suggest that various parameters of the adsorption process were not only affected by the variation in experimental conditions but also by the chemical structure of the adsorbate molecules for the same adsorbent.