You are looking at 1 - 10 of 976 items :

  • Software Development x
Clear All Modify Search
Managing Software Development Risk
Design and Implementation
with Python in Kivy Framework
Series: De Gruyter STEM
Volume 2: Composite Data Structures and Modularization
Volume 1: Basic Data Structures and Program Statements
Objektorientierte Softwareentwicklung
Series: De Gruyter STEM


Falls are a multifactorial cause of injuries for older people. Subjects with osteoporosis are more vulnerable to falls. The focus of this study is to investigate the performance of the different machine learning models built on spatiotemporal gait parameters to predict falls particularly in subjects with osteoporosis. Spatiotemporal gait parameters and prospective registration of falls were obtained from a sample of 110 community dwelling older women with osteoporosis (age 74.3 ± 6.3) and 143 without osteoporosis (age 68.7 ± 6.8). We built four different models, Support Vector Machines, Neuronal Networks, Decision Trees, and Dynamic Bayesian Networks (DBN), for each specific set of parameters used, and compared them considering their accuracy, precision, recall and F-score to predict fall risk. The F-score value shows that DBN based models are more efficient to predict fall risk, and the best result obtained is when we use a DBN model using the experts’ variables with FSMC’s variables, mixed variables set, obtaining an accuracy of 80%, and recall of 73%. The results confirm the feasibility of computational methods to complement experts’ knowledge to predict risk of falling within a period of time as high as 12 months.


A problem of reducing interval uncertainty is considered by an approach of cutting off equal parts from the left and right. The interval contains admissible values of an observed object’s parameter. The object’s parameter cannot be measured directly or deductively computed, so it is estimated by expert judgments. Terms of observations are short, and the object’s statistical data are poor. Thus an algorithm of flexibly reducing interval uncertainty is designed via adjusting the parameter by expert procedures and allowing to control cutting off. While the parameter is adjusted forward, the interval becomes progressively narrowed after every next expert procedure. The narrowing is performed via division-by-q dichotomization cutting off the q −1-th parts from the left and right. If the current parameter’s value falls outside of the interval, forward adjustment is canceled. Then backward adjustment is executed, where one of the endpoints is moved backwards. Adjustment is not executed when the current parameter’s value enclosed within the interval is simultaneously too close to both left and right endpoints. If the value is “trapped” like that for a definite number of times in succession, the early stop fires.