SEARCH CONTENT

You are looking at 1 - 10 of 5,947 items :

  • IT-Security and Cryptology x
Clear All Modify Search
Series: De Gruyter STEM

Abstract

Software testing is a very important technique to design the faultless software and takes approximately 60% of resources for the software development. It is the process of executing a program or application to detect the software bugs. In software development life cycle, the testing phase takes around 60% of cost and time. Test case generation is a method to identify the test data and satisfy the software testing criteria. Test case generation is a vital concept used in software testing, that can be derived from the user requirements specification. An automatic test case technique determines automatically where the test cases or test data generates utilizing search based optimization method. In this paper, Cuckoo Search and Bee Colony Algorithm (CSBCA) method is used for optimization of test cases and generation of path convergence within minimal execution time. The performance of the proposed CSBCA was compared with the performance of existing methods such as Particle Swarm Optimization (PSO), Cuckoo Search (CS), Bee Colony Algorithm (BCA), and Firefly Algorithm (FA).

Abstract

An elementary proof that the equation x 2n + y 2n = z 2n can not have any non-zero positive integer solutions when n is an integer ≥ 2 is presented. To prove that the equation has no integer solutions it is first hypothesized that the equation has integer solutions. The absence of any integer solutions of the equation is justified by contradicting the hypothesis.

Abstract

Face recognition is one of the core and challenging issues in computer vision field. Compared to computer vision, human visual system can identify a target from complex backgrounds quickly and accurately. This paper proposes a new network model deriving from Where-What Networks (WWNs), which can approximately simulate the information processing pathways (i.e., dorsal pathway and ventral pathway) of human visual cortex and recognize different types of faces with different locations and sizes in complex background. To enhance the recognition performance, synapse maintenance mechanism and neuron regenesis mechanism are both introduced. Synapse maintenance is used to reduce the background interference while neuron regenesis mechanism is introduced to regulate the neuron resource dynamically to improve the network usage efficiency. Experiments have been conducted on human face images of 5 types, 11 sizes, and 225 locations in complex backgrounds. Experiment results demonstrate that the proposed WWN model can basically learn three concepts (type, location and size) simultaneously. The experiment results also show the advantages of the enhanced WWN-7 model for face recognition in comparison with several existing methods.

Abstract

Recognition of sarcastic statements has been a challenge in the process of sentiment analysis. A sarcastic sentence contains only positive words conveying a negative sentiment. Therefore, it is tough for any automated machine to identify the exact sentiment of the text in the presence of sarcasm. The existing systems for sarcastic sentiment detection are limited to the text scripted in English. Nowadays, researchers have shown greater interest in low resourced languages such as Hindi, Telugu, Tamil, Arabic, Chinese, Dutch, Indonesian, etc. To analyse these low resource languages, the biggest challenge is the lack of available resources, especially in the context of Indian languages. Indian languages are very rich in morphology which pose a greater challenge for the automated machines. Telugu is one of the most popular languages after Hindi among Indian languages. In this article, we have collected and annotated a corpus of Telugu conversation sentences in the form of a question followed by a reply for sarcasm detection. Further, a set of algorithms are proposed for the analysis of sarcasm in the corpus of Telugu conversation sentences. The proposed algorithms are based on hyperbolic features namely, Interjection, Intensifier, Question mark and Exclamation symbol. The achieved accuracy is 94%.

Abstract

The pigeon-inspired optimization algorithm is a category of a newly proposed swarm intelligence-based algorithm that belongs to the population-based solution technique. The MKP is a class of complex optimization problems that have many practical applications in the fields of engineering and sciences. Due to the practical applications of MKP, numerous algorithmic-based methods like local search and population-based search algorithms have been proposed to solve the MKP in the past few decades. This paper proposes a modified binary pigeon-inspired optimization algorithm named (Modified-BPIO) for the 0 - 1 multidimensional knapsack problem (MKP). The utilization of the binary pigeon-inspired optimization (BPIO) for solving the multidimensional knapsack problem came with huge success. However, it can be observed that the BPIO converges prematurely due to lost diversity during the search activities. Given the above, the crossover operator is integrated with the landmark component of the BPIO to improve the diversity of the solution space. The MKP benchmarks from the Operations Research (OR) library are utilized to test the performance of the proposed binary method. Experimentally, it is concluded that the proposed Modified-BPIO has a better performance when compared with the BPIO and existing state-of-the-arts that worked on the same MKP benchmarks.

Abstract

Cloud computing deals with voluminous heterogeneous data, and there is a need to effectively distribute the load across clusters of nodes to achieve optimal performance in terms of resource usage, throughput, response time, reliability, fault tolerance, and so on. The swarm intelligence methodologies use artificial intelligence to solve computationally challenging problems like load balancing, scheduling, and resource allocation at finite time intervals. In literature, sufficient works are being carried out to address load balancing problem in the cloud using traditional swarm intelligence techniques like ant colony optimization, particle swarm optimization, cuckoo search, bat optimization, and so on. But the traditional swarm intelligence techniques have issues with respect to convergence rate, arriving at the global optimum solution, complexity in implementation and scalability, which limits the applicability of such techniques in cloud domain. In this paper, we look into performance modeling aspects of some of the recent competitive swarm artificial intelligence based techniques like the whale, spider, dragonfly, and raven which are used for load balancing in the cloud. The results and analysis are presented over performance metrics such as total execution time, response time, resource utilization rate, and throughput achieved, and it is found that the performance of the raven roosting algorithm is high compared to other techniques.