SEARCH CONTENT

You are looking at 1 - 10 of 1,566 items :

  • Environmental Management x
Clear All Modify Search
Managing Environmental Risk and Sustainability

Abstract

Road traffic noise has been recognized as a serious issue that affects the urban regions. Due to urbanization and industrialization, transportation in urban areas has increased. Traffic noise characteristics in cities belonging to a developing country like India are highly varied compared to developed nations because of its heterogeneous conditions. The objective of the research study is to assess noise pollution due to heterogeneous traffic conditions and the impact of horn honking due to un-authorized parked vehicles on the main roadside. Noise mapping has been done using the computer simulation model by taking various noise sources and noise propagation to the receiver point. Traffic volume, vehicular speed, noise levels, road geometry, un-authorized parking, and horn honking were measured on tier-II city roads in Surat, India. The study showed not so significant correlation between traffic volume, road geometry, vehicular speed and equivalent noise due to heterogeneous road traffic conditions. Further, analysis of traffic noise showed that horn honking due to un-authorized parked vehicles contributed an additional up to 11 dB (A), which is quite significant. The prediction models such as U.K’s CoRTN, U.S’s TNM, Germany’s RLS-90 and their modified versions have limited applicability for heterogeneity. Hence, the noise prediction models, which can be used for homogeneous road traffic conditions are not successfully applicable in heterogeneous road traffic conditions. In this research, a new horn honking correction factor is introduced with respect to unauthorized parked vehicles. The horn honking correction values can be integrated into noise model RLS-90, while assessing heterogeneous traffic conditions.

Abstract

Athens International Airport (A.I.A) is the first major transportation infrastructure in Greece with the participation of the private sector, a pioneer international Public-Private Partnership. Environmental protection is a priority, and AIA, is committed to protect the environment and preventing or lessening negative impacts, through a comprehensive Environmental Policy and Procedures. Within this framework, AIA has already carried out the study for Strategic Noise Map (SNM) and the Noise Action Plan (NAP) for the Aircraft Noise. According to the European Directive 49/2002 the study should be repeated every 5 years. This research article focuses on the comparative study for the latest SNMs 2017 & 2019 (ECAC Doc.29) and for 2019 (executed by the new methodology CNOSSOS-GR), for the respective traffic data 2016 & 2018, and presents the results of the acoustic model in order to create the Strategic Noise Maps for Lden & Lnight indicators. With a view to implementing the legislation, an analysis of aircraft mix for every year (except helicopters, military and other specific flights) was carried out in accordance with the categorisation provided for in the relevant recommendation of the Committee of 6 August 2003 and the European Commission adopted Directive 2015/996. The potential health effects were further analyzed using the World Health Organization (WHO’s) Disability Adjusted Life Year’s (DALY’s) metrics for aircraft noise in relation to the exposure of the population based on the results of alternative comparative Strategic Noise Maps. The aim of the study is to show how the combination of both the implementation of the European Directive 2002/49 and 2015/996 and the DALY approach is an analysis tool for the evaluation of the acoustic environment. As we can observe in the results, the overall findings are significantly lower in the case of SNM 2019 (executed by the new methodology CNOSSOS-GR) than in the others.

Abstract

Most of the railway lines in Slovakia were built in the second half of the 19th century, or until 1918 (the establishment of Czechoslovakia). Except for the post-World War II period, when approximately 71 % of the Slovak lines had to be renewed, limited funds have been spent on repair and reconstruction works on the lines located in the Slovak territory. As some trans-European corridors cross the Slovak territory and the Slovak Republic assumed obligations arising from the AGC and AGTC agreements, the line modernization is more than desirable. The primary objective of the modernisation of railway lines in the territory of Slovakia is to ensure a high-quality and safe railway, which by its qualitative parameters corresponds to the standards of developed European countries. In this context, the paper deals with a section of the modernised corridor no. Va, specifically the section Považská Teplá - Žilina. During the period 2014-2017, quality diagnostics of the performed work was carried out on the sub-ballast layers of the above-mentioned line. Consequently, we carried out an analysis of the obtained values of the deformation resistance of the subgrade surface, as the weakest element in the construction of the sub-ballast layers.

Abstract

This paper depends on a test examination on basalt fibres which started from volcanic shakes and were dissolved at high temperatures. These stones were accessible from the world’s profound hull. M30 evaluation of concrete was structured according to is 10262:2009 with basalt fibres. The fibres alongside mineral admixtures were utilized in three distinct extents, that is 0 %, 1 %, 2 %, 3 % by heaviness of cement. The goal was to decide the characteristics of fibre reinforced concrete with various fibre extents. The strength properties, for example, compressive strength, split tensile strength, flexural strength, shear strength and the impact on strength of concrete when it was unprotected to sulphate attack after stipulated extended ages of curing were contemplated and thought about. From the examination, it was discovered that the basalt fibre expanded the strength of concrete notwithstanding when unprotected to sulphate attack bit by bit when compared with consistent concrete. The ideal strength of concrete was accomplished with an enlargement of 2 % basalt fibre.

Abstract

Considering that the unevenness of the road surface is the primary source of the kinematic excitation of the vehicle, it is necessary to map the unevenness, and then to describe it mathematically. The data sets thus obtained represent an important input for numerical simulations of the motion of vehicles on the road. This paper deals with the analysis and comparison of results from two methods of mapping the surface of the road - exact levelling and spatial scanning. The obtained results are evaluated qualitatively and quantitatively by methods of mathematical statistics and probability theory.

Abstract

This article is a dimensioning study of the landfill locker dike of the city of Casablanca, where the geotechnical parameters of waste have particular limitations, theses limitation are a common characteristic for most developing countries. Considering the very small available land area in general, the objective is to achieve an optimal dimensioning of the locker to maximize the volume to be buried, while respecting the requirements of stability of the structure; namely, the model whose safety factor will be greater than 1.5. The Factor of Safety (FoS) was calculated by the Finite Element Method (FEM) using “PLAXIS 2D” software. The results show that, for both cases (with and without final cover), FoS, as obtained from both the analysis, show a similar pattern, with the maximum FoS for low inclinations, especially those lower than 15.95°. The critical FoS (< 1), was obtained for slopes strictly greater than 21.80°. The study also demonstrated that the 3.5H 1V model could be considered as the optimal one that satisfies the structural stability requirements (FoS> 1.5) and maximizes the volume to be buried. Nevertheless, the validation of this model is conditioned by a geometric modification (weakening the lateral slope of the landfill, by moving the dikes by 3 m) and the improvement of the mechanical characteristics of the soil of the peripheral dike, through replacing the material with the compacted clay. This model was validated by PLAXIS, which showed that the FoS for the phase preceding the anchoring of the final cover is 1.577, which reaches 1.604 after anchoring.

Abstract

The paper deals with the determination of mechanical properties of fiber reinforced concrete in dependence on various dosages and recipe of concrete. The mechanical properties were determined for the default recipe of concrete, where the individual variants differ in the amount of fibers. The fibers dosing was 0, 25, 50 and 75 kg/m3. At the highest dosage of 75 kg/m3, the recipe is optimized with regard to the microstructure of the concrete. In the experimental program were determined compressive strength, modulus of elasticity, split tensile strength, flexural tensile strength and load-displacement diagram. The flexural tensile strength was determined based on a three-point and four-point bending test. Based on the evaluated data, the uniaxial tensile strength and the functional dependence for the resultant recipe of concrete with a dosage of 75 kg/m3 is with respect of the increasing importance and application of numerical modelling of building structures, the analysis is performed using non-linear calculation. The aim was to simulate the performed laboratory test and appropriately approximate the specific input parameters of the fiber reinforced concrete for nonlinear analysis.

Abstract

Degradation and disintegration of concrete depend on the formation of cracks and micro cracks intensively. With increase loading, micro cracks are linked together and form cracks. To solve the problem and to provide the homogenous condition, a series of thin fibers having been spread through the volume of concrete are used in the several last decades and they are called as fibers. In the study, the steel fibers integrated in the different percentages of weight have been investigated. The performance of fibers has been studied how to increase compressive strength, tensile strength, and bending strength. To survey compressive strength, tensile strength, and bending strength in the produced concrete, three plans of mixtures including the different percentages of the steel fibers have been examined. The results show that compressive strength in the concrete reinforced with steel fibers relies mainly on the quality of mortar. The added steel fibers cause the inconsiderable changes in the compressive strength of concrete. The results demonstrate that the concrete reinforced with steel fibers increase tensile strength considerably. The more the volume of steel fibers is, the more tensile strength is. Pozzolanic materials used in the specimens reinforced in steel fibers improve tensile strength. To investigate bending strength of the specimens reinforced with steel fibers, the study has used 4-point loading system. Generally, steel fibers used in the concrete increase bending strength of the concrete. The results indicate the increased steel fibers enhance bending strength in three plans of mixtures. Among the specimen reinforced with steel fibres, the most mechanical properties are related to the plans including 1, 1.5, and 2 percentages of dramix hooked steel fibers in the study. To examine crack pattern of the matrix tensile specimen reinforced with the different percentages of fibers, parameters such as the number of cracks, width of cracks, and distance between them are investigated.