You are looking at 1 - 10 of 660 items :

  • Engineering x
Clear All
From Infancy to Young Adulthood


The development of biosensors to identify molecular markers or specific genes is fundamental for the implementation of new techniques that allow the detection of specific Deoxyribonucleic acid (DNA) sequences in a fast, economic and simple way. Different detection techniques have been proposed in the development of biosensors. Electrical Bioimpedance Spectroscopy (EBiS) has been used for diagnosis and monitoring of human pathologies, and is recognized as a safe, fast, reusable, easy and inexpensive technique. This study proves the development of a complementary DNA (cDNA) biosensor based on measurements of EBiS and DNA's immobilization with no chemical modifications. The evaluation of its potential utility in the detection of the gene expression of three inflammation characteristic biomarkers (NLRP3, IL-1β and Caspase 1) is presented. The obtained results demonstrate that EBiS can be used to identify different gene expression patterns, measurements that were validated by Quantitative Polymerase Chain Reaction (qPCR). These results indicate the technical feasibility for a biosensor of specific genes through bioimpedance measurements on the immobilization of cDNA.


Impedance cardiography (ICG) is a non-invasive method to evaluate several cardiodynamic parameters by measuring the cardiac-synchronous changes in the dynamic transthoracic electrical impedance. ICG allows us to identify and quantify conductivity changes inside the thorax by measuring the impedance on the thorax during a cardiac cycle. Pathologic changes in the aorta, like aortic dissection, will alter the aortic shape as well as the blood flow and consequently, the impedance cardiogram. This fact distorts the evaluated cardiodynamic parameters, but it could lead to the possibility to identify aortic pathology. A 3D numerical simulation model is used to compute the impedance changes on the thorax surface in case of the type B aortic dissection. A sensitivity analysis is applied using this simulation model to investigate the suitability of different electrode configurations considering several patient-specific cases. Results show that the remarkable pathological changes in the aorta caused by aortic dissection alters the impedance cardiogram significantly.



Young ballet dancers are at risk of health issues associated with altered nutritional status and of relative energy deficiency in sport compared to the general population.


To evaluate the nutritional status and body composition in ballet dancers.

Materials and methods

The study group consisted of 40 young ballet dancers (mean age 19.97 years). Height and weight were measured and body mass index was calculated in all subjects (mean BMI value 19.79 kg/m2, SD: 2.051). Body composition was estimated using the bioelectrical impedance method.


The dancers’ fat-free mass was 47.33 kg (SD: 5.064) and, on the average, body fat represented the 15.92% (SD: 16.91) of their body weight.


Ballet dancers, who usually show significantly lower BMI values compared to the general population, also displayed body fat values under the suggested range. Some screening for altered nutritional status should be performed. In addition, education programs should be recommended in young ballet dancers, in order to inform about energy and nutrition requirements for health and training and to prevent malnutrition-related problems.


There is a strong need for a non-invasive measurement technique that is capable of accurately identifying the physiological condition change or heterogeneity of subcutaneous adipose tissue (SAT) by localizing the abnormalities within the compartment. This paper aims to investigate the feasibility of Electrical Impedance Tomography (EIT) to assess the interstitial fluid in subcutaneous adipose tissue as an enhancement method of bioelectrical impedance spectroscopy (BIS). Here, we demonstrate the preliminary result of EIT with a wearable 16 electrodes sensor. The image-based reference EIT with fat weighted threshold method is proposed. In order to evaluate the performance of our novel method, a physiological swelling experiment is conducted, and Multi-Frequency Bioelectrical Impedance Analysis (MFBIA) is also applied as a comparison with EIT results. The experimental results showed that the proposed method was able to distinguish the physiological swelling condition and effectively to remove the unexpected background noise. Furthermore, the conductivity variation in the subcutaneous layer had a good correlation with extracellular water volume change from MFBIA data; the correlation coefficient R2 = 0.927. It is concluded that the proposed method provides a significant prospect for SAT assessment.