SEARCH CONTENT

You are looking at 1 - 10 of 41,007 items :

  • Materials Sciences, other x
Clear All Modify Search
Implication of Anthropogenic Nanomaterials
Series: De Gruyter STEM
Materials Physics, Synthesis, Characterization and Applications
Models and Technologies in Cancer Research
Series: De Gruyter STEM
From Introduction to Application
Series: De Gruyter STEM

Abstract

The numerical simulations are used to conduct the comparative study of pin-fins cooling channel and multi-impingement cooling channel on the heat transfer and flow, and to design the multi-impingement channel through the parameters of impinging distance and impingement-jet-plate thickness. The Reynolds number ranges from 1e4 to 6e4. The dimensionless impinging distance is 0.60, 1.68, 2.76, respectively, and the dimensionless impinging-jet-thickness is 0.5, 1.0, 1.5, respectively. The endwall surface, pin-fins surface, impinging-jet-plate surface are the three object surfaces to investigate the channel heat transfer performance. The heat transfer coefficient h and augmentation factor Nu/Nu0 are selected to measure the surface heat transfer, and the friction coefficient f is chosen to evaluate the channel flow characteristics. The impinging-jet-plate surface owns higher heat transfer coefficient and larger area than pin-fins surface, which are the main reasons to improve the heat transfer performance of multi-impingement cooling channel. Reducing the impinging distance can improve the endwall surface heat transfer obviously and enhance impingement plate surface heat transfer to some extent, decreasing the thickness of impinging-jet-plate can significantly increase its own heat transfer coefficient, which both all increase the cooling air flow loss.

Abstract

Ceramic Matrix Composites (CMCs) are primary candidates for advanced gas turbine engine application that require intense high temperature tests and validations. Before CMCs used in engine hot sections, a lot of tests need to be done, especially thermal test. A thermal test rig has been set up to simulate the engine turbine thermal environment. Propane gas is used to simulate the practical aviation fuel and compressed air with flow regulator is used as cooling media. The capabilities and limitations of the test facility have been calibrated and discussed in this paper. A CMC turbine vane with internal cooling path was tested on this burning rig. The results showed that the CMC vane could withstand the 1200 ℃ thermal cycling test but the coating was disappeared. It has been proved that such test rig and method could simulate the thermal boundary conditions of turbine vanes and blades.

Abstract

Control of Mach 1.5 elliptic jet with ventilated triangular tabs is studied experimentally, in the presence of different levels of pressure gradient at the nozzle exit. Three different sets of ventilated tabs with circular, triangular and trapezoidal ventilations were studied. Two tabs were placed, at the ends of major and minor axes, at the exit of the elliptic nozzle of aspect ratio 3.37. The mixing enhancement caused by these tabs was studied in the presence of adverse and favorable pressure gradients, corresponding to nozzle pressure ratio (NPR) from 3 to 8. For Mach 1.5 jet NPR 3 corresponds to 18 % adverse pressure gradient and NPR 8 corresponds to 118 % favorable pressure gradient. The results of ventilated tabs are compared with unventilated truncated triangular tabs of identical geometry. The difference between the mixing promoting efficiency of the unventilated and ventilated tabs is only marginal (around 5–6 %). All tabs cause jet bifurcation and weaken the waves in the jet core. The tab with trapezoidal ventilation, at NPR 3, promotes mixing to an extent of reducing the core to about 92 %. At higher NPRs the mixing caused by unventilated tab is slightly better than the ventilated tabs.