SEARCH CONTENT

You are looking at 1 - 10 of 1,595 items :

Clear All
Biomedical Aspects of the Mechanical Properties of Cells and Tissues
Series: De Gruyter STEM
Models and Technologies in Cancer Research
Series: De Gruyter STEM

Abstract

It is a common challenge for the surgeon to detect pathological tissues and determine the resection margin during a minimally invasive surgery. In this study, we present a drop-in sensor probe based on the electrical bioimpedance spectroscopic technology, which can be grasped by a laparoscopic forceps and controlled by the surgeon to inspect suspicious tissue area conveniently. The probe is designed with an optimized electrode and a suitable shape specifically for Minimally Invasive Surgery (MIS). Subsequently, a series of ex vivo experiments are carried out with porcine liver tissue for feasibility validation. During the experiments, impedance measured at frequencies from 1 kHz to 2 MHz are collected on both normal tissues and water soaked tissue. In addition, classifiers based on discriminant analysis are developed. The result of the experiment indicate that the sensor probe can be used to measure the impedance of the tissue easily and the developed tissue classifier achieved accuracy of 80% and 100% respectively.

Abstract

Howland circuits have been widely used in Electrical Bioimpedance Spectroscopy applications as reliable current sources. This paper presents an algorithm based on Differential Evolution for the automated design of Enhanced Howland Sources according to arbitrary design constraints while respecting the Howland ratio condition. Results showed that the algorithm can obtain solutions to commonly sought objectives, such as maximizing the output impedance at a given frequency, making it a versatile method to be employed in the design of sources with specific requirements. The mathematical modeling of the source output impedance and transconductance, considering a non-ideal operational amplifier, was validated against SPICE simulations, with results matching up to 10 MHz.

Abstract

Monitoring a biological tissue as a three dimensional (3D) model is of high importance. Both the measurement technique and the measuring electrode play substantial roles in providing accurate 3D measurements. Bioimpedance spectroscopy has proven to be a noninvasive method providing the possibility of monitoring a 3D construct in a real time manner. On the other hand, advances in electrode fabrication has made it possible to use flexible electrodes with different configurations, which makes 3D measurements possible. However, designing an experimental measurement set-up for monitoring a 3D construct can be costly and time consuming and would require many tissue models. Finite element modeling methods provide a simple alternative for studying the performance of the electrode and the measurement set-up before starting with the experimental measurements. Therefore, in this study we employed the COMSOL Multiphysics finite element modeling method for simulating the effects of changing the electrode configuration on the impedance spectroscopy measurements of a venous segment. For this purpose, the simulations were performed for models with different electrode configurations. The simulation results provided us with the possibility of finding the optimal electrode configuration including the geometry, number and dimensions of the electrodes, which can be later employed in the experimental measurement set-up.

Abstract

Physiological saline (0.9% NaCl) and deionized water were frozen in a laboratory chest freezer and impedance was monitored throughout freezing and thawing. The resistive and reactive components of electrical impedance were measured for these samples during freezing and thawing (heating) within a temperature range between 20 °C and −48 °C. The impedance of saline solution and de-ionized water increases sharply at the freezing point, similar to what is known for, e.g., complex tissues, including meat. Yet, only the saline solution impedance shows another sharp increment at a temperature between −30 and −20 °C. Changes of the electric properties after solidification suggest that the latter is linked to transformations of the ice lattice structure. We conclude that the electrical properties might serve as sensitive indicators of these phase changes.

Abstract

The Cole-Cole model for a dielectric is a generalization of the Debye relaxation model. The most familiar form is in the frequency domain and this manifests itself in a frequency dependent impedance. Dielectrics may also be characterized in the time domain by means of the current and charge responses to a voltage step, called response and relaxation functions respectively. For the Debye model they are both exponentials while in the Cole-Cole model they are expressed by a generalization of the exponential, the Mittag-Leffler function. Its asymptotes are just as interesting and correspond to the Curie-von Schweidler current response which is known from real-life capacitors and the Kohlrausch stretched exponential charge response.

Abstract

Can we have personal robots without giving away personal data? Besides, what is the role of a robots Privacy Policy in that question? This work explores for the first time privacy in the context of consumer robotics through the lens of information communicated to users through Privacy Policies and Terms and Conditions. Privacy, personal and non-personal data are discussed under the light of the human–robot relationship, while we attempt to draw connections to dimensions related to personalization, trust, and transparency. We introduce a novel methodology to assess how the “Organization for Economic Cooperation and Development Guidelines Governing the Protection of Privacy and Trans-Border Flows of Personal Data” are reflected upon the publicly available Privacy Policies and Terms and Conditions in the consumer robotics field. We draw comparisons between the ways eight consumer robotic companies approach privacy principles. Current findings demonstrate significant deviations in the structure and context of privacy terms. Some practical dimensions in terms of improving the context and the format of privacy terms are discussed. The ultimate goal of this work is to raise awareness regarding the various privacy strategies used by robot companies while ultimately creating a usable way to make this information more relevant and accessible to users.