SEARCH CONTENT

You are looking at 1 - 10 of 9,605 items :

  • Physics, other x
Clear All

Abstract

Microbial enzymes are green and clean alternatives for several processes in the pulp and paper industry. Enzyme treatment decreases the energy requirement and minimizes the wood losses during drum debarking. Lipophilic wood extractives are known as pitch. Pitch deposition adversely affects the pulp quality and increases equipment maintenance and operating costs during paper manufacturing. Several chemical additives have been used to remove pitch deposits. Natural seasoning of wood is used to minimize pitch content in wood, but it has some disadvantages including yield losses and decreased brightness. Controlled seasoning with white-rot fungi or albino strains of sapstain fungi is an effective tool for degradation and removal of wood extractives. Enzymes including lipase, laccase, sterol esterase, and lipooxygenase have also been used to minimize pitch-related problems. Enzymatic retting has been proved an eco-friendly and economical solution for chemical degumming and traditional retting.

Abstract

NASA is planning to launch robotic landers to the Moon as part of the Artemis lunar program. We have proposed sending a greenhouse housed in a 1U CubeSat as part of one of these robotic missions. A major issue with these small landers is the limited power resources that do not allow for a narrow temperature range that we had on previous spaceflight missions with plants. Thus, the goal of this project was to extend this temperature range, allowing for greater flexibility in terms of hardware development for growing plants on the Moon. Our working hypothesis was that a mixture of ecotypes of Arabidopsis thaliana from colder and warmer climates would allow us to have successful growth of seedlings. However, our results did not support this hypothesis as a single genotype, Columbia (Col-0), had the best seed germination, growth, and development at the widest temperature range (11–25 °C). Based on results to date, we plan on using the Columbia ecotype, which will allow engineers greater flexibility in designing a thermal system. We plan to establish the parameters of growing plants in the lunar environment, and this goal is important for using plants in a bioregenerative life support system needed for human exploration on the Moon.

Abstract

Building on the existing model, an improved constitutive model for rock is proposed and extended in three dimensions. The model can avoid the defect of non-zero dynamic stress at the beginning of impact loading, and the number of parameters is in a suitable range. The three-dimensional expansion method of the component combination model is similar to that of the Hooke spring, which is easy to operate and understand. For the determination of model parameters, the shared parameter estimation method based on the Levenberg–Marquardt and the Universal Global Optimization algorithm is used, which can be well applied to models with parameters that do not change with confinement and strain rates. According to the established dynamic constitutive equation, the stress–strain curve of rock under the coupling action of the initial hydrostatic pressure load and constant strain-rate impact load can be estimated theoretically. By comparing the theoretical curve with the test data, it is shown that the dynamic constitutive model is suitable for the rock under the initial pressure and impact load.

Abstract

The purpose of this study is to reduce the maintenance time, cost, and scheduling distance and to determine the maintenance priority of planned shop visit products. This study introduces the concept of maintenance map, establishes the evaluation indicators system of maintenance map from the perspective of organizational quality-specific immune, and puts forward two key dimensions named maintenance plan and technical support of maintenance map. Based on the theoretical framework, construct a heuristic decision model of planned shop visit products based on similar reasoning, set the maintenance services data of Harbin Dongan Engine Co., Ltd., as research objects, and use the concrete schemes and cases to solve and carry out an empirical analysis of the heuristic decision of planned shop visit products based on similar reasoning with the help of the ant colony algorithm; the empirical analysis results indicate that maintenance map and evaluation indicators system are the fundamental basis of the heuristic decision based on similar reasoning, the combinations of similar reasoning and ant colony algorithm can achieve the optimal heuristic decision of planned shop visit products, which have effectiveness, feasibility, and operability. This research will be conductive to give out the heuristic decision of scheduling schemes of planned shop visit products, which will be beneficial to enhance maintenance efficiency and quality, promote learning effects and learning pattern paths, and reduce maintenance scheduling distances of planned shop visit products from the aspects of theoretical framework guidance, empirical system enlightenment, and conceptual paradigm reference.

Abstract

Mass transfer between the phases is a cornerstone of many technological processes and presents a topic whose understanding and modelling is of high importance. For instance, absorption of gases in liquid droplets is an underlying phenomenon for the desulfurization of flue gases in wet scrubbers. Wet scrubbing is an efficient cleaning method where the liquid is sprayed in a stream of rising gases, removing pollutants due to the concentration difference between the gas phase and droplets. A model for absorption in water droplets has been developed to describe the complex physical and chemical interactions during the exposure to flue gases. The main factors affecting the absorption are the mass transfer of pollutants through the gas–droplet interface and the aqueous phase chemistry in a droplet. The mass transfer coefficient, which has been modeled with several approaches, is the most significant parameter regulating the absorption dynamic into the droplet, while the in-droplet chemistry controls the maximum quantity of dissolved pollutants. Dissociation of sulfur dioxide and the chemical reactions in seawater have been described by the equilibrium reactions. Afterward, the influence of the mass transfer coefficient has been investigated, and the model has been validated against the literature data on a single droplet scale. Obtained results are comparable with the experimental measurements and indicate the applicability of the model for the design and development of industrial scrubbers.

Abstract

With the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.

Abstract

A series of CuO/CeO2 catalysts were successfully synthesized via solution combustion method (SCS) using different fuels and tested for CO oxidation. The catalysts were characterized by energy-dispersive X-ray analysis (EDXA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), N2 adsorption-desorption isotherms and H2 temperature-programmed reduction (H2-TPR). It was found that the used fuels strongly affected the characterization and the low-temperature reduction behavior of CuO/CeO2 catalysts. The CuO/CeO2-urea catalyst exhibited higher catalytic activity toward CO oxidation (t 50=120∘C, t 100=159∘C) than the 5 other synthesized catalysts. In addition, the CuO/CeO2-urea catalyst displayed high stability for CO oxidation during five cycles and water resistance. The enhanced catalytic CO oxidation of the synthesized samples can be attributed by a combination of factors, such as smaller crystallite size, higher specific surface area, larger amount of amorphous copper(II) oxide, more mesoporous and uniform spherical-like structure. These findings are worth considering in order to continue the study of the CuO/CeO2 catalyst with low-temperature CO oxidation.

Abstract

Disadvantages in the use of polylactic acid (PLA) as a base material for Tissue Engineering applications include the low osteoconductivity of this biomaterial, its acidic degradation and the deficient cellular adhesion on its surface. In order to counteract these drawbacks, calcium carbonate (CaCO3) and β-tricalcium phosphate (Ca3(PO4)2, β-TCP) were proposed in this work as additives of PLA-based support structures. Composite scaffolds (PLA:CaCO3: β-TCP 95:2.5:2.5) manufactured by fused deposition modeling (FDM) were tested under enzymatic degradation using proteinase K enzymes to assess the modification of their properties in comparison with neat PLA scaffolds. The samples were characterized before and after the degradation test by optical microscopy, scanning electron microscopy, compression testing and thermogravimetric and calorimetric analysis. According to the results, the combination of the PLA matrix with the proposed additives increases the degradation rate of the 3D printed scaffolds, which is an advantage for the application of the composite scaffold in the field of Tissue Engineering. The higher degradation rate of the composite scaffolds could be explained by the release of the additive particles and the statistically higher microporosity of these samples compared to the neat PLA ones.

Abstract

Exact formulae relating parameters in conditional and reduced generalized linear models are introduced where the reduced model omits a continuous mediator from the conditional model. For certain link functions including logit, the natural direct effect and the natural indirect effect of the counterfactual method are smaller in magnitude than, respectively, the direct effect used by the difference method and the indirect effect by the product method. Contrary to what is implicitly assumed in Jiang and VanderWeele [11] for logit link, the total effect of the counterfactual method and the total effect used for the difference method are generally not the same. They are equal to each other only under special situations. For accelerated failure time models the difference method and the product method are equivalent regardless of censoring or not, a result stated in VanderWeele [6] in the absence of censorship but proved in a misleading manner. For proportional hazards models, maximum likelihood analysis indicates that these two methods can be equivalent in the absence of censorship. In the case of logit link, one can focus on the treatment effect on the marginalized odds instead of the odds of the marginalized event so that the product method would be equivalent to the difference method. Similarly, for the proportional hazards model, one can focus on the treatment effect on the marginalized hazards instead of the hazards for the reduced model.

Abstract

In this article, we study the two-flavor Nambu and Jona-Lasinio (NJL) phase diagrams on the Tμ plane through three regularization methods. In one of these, we introduce an infrared three-momentum cutoff in addition to the usual ultraviolet regularization to the quark loop integrals and compare the obtained phase diagrams with those obtained from the NJL model with proper time regularization and Pauli–Villars regularization. We have found that the crossover appears as a band with a well-defined width in the Tμ plane. To determine the extension of the crossover zone, we propose a novel criterion, comparing it to another criterion that is commonly reported in the literature; we then obtain the phase diagrams for each criterion. We study the behavior of the phase diagrams under all these schemes, focusing on the influence of the regularization procedure on the crossover zone and the presence or absence of critical end points.